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CHAPTER 1

Symmetric bilinear forms

In this section, we will describe the foundations of the theory of non-
degenerate symmetric bilinear forms on finite-dimensional vector spaces,
and their orthogonal groups. Among the highlights of this Chapter are
the Cartan-Dieudonné theorem, which states that any orthogonal transfor-
mation is a finite product of reflections, and Witt’s theorem giving a partial
normal form for quadratic forms. The theory of split symmetric bilinear
forms is found to have many parallels to the theory of symplectic forms,
and we will give a discussion of the Lagrangian Grassmannian for this case.
Throughout, K will denote a ground field of characteristic # 2. We are
mainly interested in the cases K = R or C, and sometimes specialize to
those two cases.

1. Quadratic vector spaces

Suppose V is a finite-dimensional vector space over K. For any bilinear
form B: V x V — K, define a linear map

B:V = V* v B(v,-).

The bilinear form B is called symmetric if it satisfies B(vi,v2) = B(va,v1)
for all vi,vp € V. Since dimV < oo this is equivalent to (B")* = B’.
The symmetric bilinear form B is uniquely determined by the associated
quadratic form, Qp(v) = B(v,v) by the polarization identity,

(1) B(v,w) = 1(Qpv+w) — Qp(v) — Qp(w)).
The kernel (also called radical) of B is the subspace
ker(B) = {v € V| B(v,v1) =0 for all v; € V'},

i.e. the kernel of the linear map B°. The bilinear form B is called non-
degenerate if ker(B) = 0, i.e. if and only if B’ is an isomorphism. A vector
space V together with a non-degenerate symmetric bilinear form B will be
referred to as a quadratic vector space. Assume for the rest of this chapter
that (V, B) is a quadratic vector space.

DEFINITION 1.1. A vector v € V is called isotropic if B(v,v) = 0, and
non-isotropic if B(v,v) # 0.

For instance, if V = C™ over K = C, with the standard bilinear form
B(z,w) = >, zw;, then v = (1,4,0,...,0) is an isotropic vector. If

7



1. QUADRATIC VECTOR SPACES

V =R? over K = R, with bilinear form B(z,y) = 2131 — T2y2, then the set
of isotropic vectors © = (x1,x2) is given by the ‘light cone’ x; = +x9.
The orthogonal group O(V') is the group

(2) O(V)={AeGL(V)| B(Av,Aw) = B(v,w) for all v,w € V}.

The subgroup of orthogonal transformations of determinant 1 is denoted
SO(V), and is called the special orthogonal group.

For any subspace F' C V, the orthogonal or perpendicular subspace is
defined as

Ft ={veV|B(v,v) =0 for all v; € F}.

The image of B?(F+) C V* is the annihilator of F. From this one deduces
the dimension formula

(3) dim F 4 dim F+ = dim V/
and the identities
(FHY=F, (ANR) =F+F, (A+RK)"=FnNF

for all F, F1, Fy, C V. For any subspace F' C V the restriction of B to F' has
kernel ker(B|rxr) = F N F*.

DEFINITION 1.2. A subspace F' C V is called a quadratic subspace if the
restriction of B to F' is non-degenerate, that is F' N F+ = 0.

Using (F1)t = F we see that F is quadratic < F* is quadratic <
FoFt=V.

As a simple application, one finds that any non-degenerate symmetric
bilinear form B on V can be ’diagonalized’. Let us call a basis Fy,..., E,
of V' an orthogonal basis if B(E;, Ej) =0 for all i # j.

PROPOSITION 1.3. Any quadratic vector space (V, B) admits an orthog-
onal basis En,...,E,. If K= C one can arrange that B(E;, E;) =1 for all
i. fK=R or K =Q, one can arrange that B(E;, E;) = £1 for all i.

PRrROOF. The proof is by induction on n = dim V, the case dimV =1
being obvious. If n > 1 choose any non-isotropic vector E; € V. The span
of By is a quadratic subspace, hence so is span(F;)*. By induction, there
is an orthogonal basis E, ..., E, of span(E;)*. If K = C (resp. K = R, Q),
one can rescale the E; such that B(E;, E;) =1 (resp. B(E;, E;) = +1). O

We will denote by K™ the vector space K" with bilinear form given
by B(E;, Ej) = =+0;;, with a 4+ sign for ¢ = 1,...,n and a — sign for
i=n+1,...,n+m. If m = 0 we simple write K» = K™°, and refer to
the bilinear form as standard. The Proposition above shows that for K = C,
and quadratic vector space (V,B) is isomorphic to C" with the standard
bilinear form, while for K = R it is isomorphic to some R™"™. (Here n,m
are uniquely determined, although it is not entirely obvious at this point.)

8



CHAPTER 1. SYMMETRIC BILINEAR FORMS

2. Isotropic subspaces
Let (V, B) be a quadratic vector space.

DEFINITION 2.1. A subspace F' C V is called isotropic' if B|lpxr = 0,
that is F C F*.

The polarization identity (1) shows that a subspace F' C V is isotropic
if and only if all of its vectors are isotropic. If F' C V is isotropic, then
(4) dim F' < dim V/2
since dim V' = dim F + dim F+ > 2dim F.
PROPOSITION 2.2. For isotropic subspaces F, F' the following three con-
ditions
(a) F'+ F' is quadratic,
(b) V=Fa ()",
(c) V=Fa®F*t
are equivalent, and imply that dim F = dim F'. Given an isotropic sub-
space F C V one can always find an isotropic subspace F' satisfying these
conditions.
Proor. We have
(F+F)YN(F+F)r =(F+F)nFtn(F)*
= (F4 (F'nFH)n(F)*t
= (FN(FYYH) + (F'nFh).
Thus
(F+F)YN(F+F)Y =0 Fn(F)r=0and FFNFt=0
s FN(F)Y =0, and F+(F)t=V.
This shows (a)<(b), and similarly (a)<(c). Property (b) shows dimV =
dim F + (dim F")* = dim F +dim V —dim F’, hence dim F = dim F’. Given
an isotropic subspace F, we find an isotropic subspace F” satisfying (c) as
follows. Choose any complement W to F-, so that
V=FtoWw.
Thus V = F+ + W and 0 = F- N W. Taking orthogonals, this is equivalent
to0=FNWtand V =F+ WY, that is
V=FoW
Let S: W — F C F* be the projection along W+. Then w — S(w) € W+
for all w € W. The subspace

/ 1
F'={w—3S(w)| we W},
In some of the literature (e.g. C. Chevalley [21] or L. Grove [32]), a subspace is

called isotropic if it contains at least one non-zero isotropic vector, and totally isotropic
if all of its vectors are isotropic.



3. SPLIT BILINEAR FORMS

(being the graph of a map W — F%) is again a complement to F*, and
since for all w €

B(w — §S(w).w — 15(w)) = B(w,w — S(w)) + LB(S(w), S(w)) = 0

(the first term vanishes since w — S(w) € W+, the second term vanishes
since S(w) € F is isotropic) it follows that F” is isotropic. O

An isotropic subspace is called mazimal isotropic if it is not properly
contained in another isotropic subspace. Put differently, an isotropic sub-
space F is maximal isotropic if and only if it contains all v € F with
B(v,v) = 0.

PROPOSITION 2.3. Suppose F, F' are mazimal isotropic. Then
(a) the kernel of the restriction of B to F + F' equals F N F'. (In
particular, F' + F' is quadratic if and only if FNF' =0.)
(b) The images of F, F' in the quadratic vector space (F+F')/(FNF")
are mazximal isotropic.
(¢) dim F = dim F"’.

PROOF. Since F' is maximal isotropic, it contains all isotropic vectors of
F*, and in particular it contains F- N F’. Thus

FrnF =FnF
Similarly FN(F')t = FNF’ since F' is maximal isotropic. The calculation
(5) hence shows
(F+F)N(F+F)-=FnF,

proving (a). Let W = (F + F')/(F N F’) with the bilinear form By in-
duced from B, and 7: F + F' — W the quotient map. Clearly, By, is non-
degenerate, and m(F'), w(F") are isotropic. Hence the sum W = 7(F)+m(F’)
is a direct sum, and the two subspaces are maximal isotropic of dimension
1dimW. It follows that dim F' = dim7(F) + dim(F N F’) = dim=(F’) +
dim(F N F') = dim F'. O

DEFINITION 2.4. The Witt index of a non-degenerate symmetric bilinear
form B is the dimension of a maximal isotropic subspace.

By (4), the maximal Witt index is 2 dim V if dim V is even, and (dim V —
1) if dim V' is odd.

3. Split bilinear forms

DEFINITION 3.1. The non-degenerate symmetric bilinear form B on an
even-dimensional vector space V' is called split if its Witt index is % dimV. In
this case, maximal isotropic subspaces are also called Lagrangian subspaces.

Equivalently, the Lagrangian subspaces are characterized by the prop-
erty
F=F*+
10



CHAPTER 1. SYMMETRIC BILINEAR FORMS

Let Lag(V') denote the Lagrangian Grassmannian, i.e. the set of Lagrangian
subspaces of V.

PROPOSITION 3.2. Suppose V is a vector space with split bilinear form,
and F' o Lagrangian subspace.

(1) The set of subspaces R C V' complementary to F' carries a canonical
affine structure, with F ® F as its space of translations.

(2) The set of Lagrangian subspaces of V' complementary to F carries
a canonical affine structure, with N>F as its space of translations.

(3) If R is complementary to F, then so is R*. The map R+ R* an
affine-linear involution on the set of complements, with fized points
the affine subspace of Lagrangian complements.

(4) For any complement R, the mid-point of the line segment between
R, R* is a Lagrangian complement.

PROOF. Let m: V. — V/F be the quotient map. Define an injective
group homomorphism

Hom(V/F,F) — GL(V), fw~ Af

where Af(v) =v + f(m(v)). It defines an action of the group Hom(V/F, F)
on V', hence on the set of subspaces of V, preserving the set of subspaces
complementary to F'. The latter action is free and transitive. (Given two
complements R, R’, one can think of R* C R & F as the graph of a linear
map V/F = R — F.) This proves (1), since we may write

Hom(V/F,F)=F® (V/F)*=F®F

(using the bilinear form to identify (V/F)* = F). If R is a complement to
F, then R' is a complement to F = F. For (2), we similarly consider an
inclusion
AN(F) = O(V), ¢ Ay

where Ay(v) = v+u(m(v))¢ (identifying V/F = F*). This subgroup of O(V)
acts freely and transitively on the set of Lagrangian subspaces transverse to
F: One checks that if F’ is any Lagrangian complement to F', then all other
Lagrangian complements are obtained as graphs of skew-symmetric linear
maps F* = F' — F. This proves (2). For (3), observe first that if R
is a complement to F, then R is a complement to F+ = F. Obviously,
the fixed point set of this involution are the Lagrangian complements. If
f € Hom(V/F, F), then (f(m(v)),w) = (v, f(7(w))) from which one deduces
that Af(RY) = Ay(R)*. Hence the involution is affine-linear. For (4), we
use that the involution preserves the line through R, R+ and exchanges
R, R*. Hence it fixes the mid-point, which is therefore Lagrangian. (]

REMARK 3.3. The construction in (4) can also be phrased more directly,
as follows. Let R be a complement to F. Let S: R — F be the map defined
by (v, S(w)) = (v,w) for all v,w € R. Then R+ = {v — S(v)| v € R}, and
the midpoint between R, Rt is {v — $S(v)| v € R}. Note that this is the
construction used in the proof of Proposition 2.2.

11



3. SPLIT BILINEAR FORMS

ProPOSITION 3.4. Let FF C V be a Lagrangian subspace. The group of
orthogonal transformations of V' fixing all points of F' is the additive group

ANY(F), embedded into O(V') by the map
6 Agy Aglv) = v+ 1(m(0))6.

(Here m: V. — V/F = F* is the projection.) The group O(V)r of orthogonal
transformations A € O(V') taking F' to itself is an extension

1= A%(F) = O(V)p — GL(F) — 1.
One has O(V)rp C SO(V).

PROOF. It is clear that the subgroup A%(F) fixes all points in F. Con-
versely, suppose A fixes all points of F. Fix a Lagrangian complement F”’
to F. Then A(F’) is again a complement to F', hence is related to F’ by
some ¢ € A2(F). The transformation A = Aq_sl o A preserves F'. For all
ve Fand we F', we have (v, Aw) = (A", w) = (v, w), hence Aw = w.
This shows that A fixes all points of F, F’, and is hence equal to the iden-
tity. That is, A = Ay. For any A € O(V)p, the restriction to F' defines an
element of GL(F'), which is trivial if and only if A fixes F' pointwise, i.e. if
lies in the subgroup A?(F). The map to GL(F) is surjective: Given any
g € GL(F), let F" = F* carry the transformation (¢~!)*. The transforma-
tion A = (g71)* @ g of F* @ F = F is orthogonal, and restricts to g on F.
Note that this transformation has determinant 1, as do all transformations
in A2(F). O

If F is a Lagrangian subspace, the choice of a Lagrangian complement
F' = F* identifies V with F* @ F, with the quadratic form given by the
pairing:
B((v), (1,0)) = (1,v).
That is, B((u1,v1), (p2,v2)) = 3({1,v2) + (ua,v1)). Given such a La-
grangian splitting of V' one can construct an adapted basis:

PROPOSITION 3.5. Let (V,B) be a quadratic vector space with a split

bilinear form. Then there exists a basis e1,...,ek, f1,..., fx of V in which
the bilinear form is given as follows:
(6) Blei ej) =0, Blei, f;) = 5035, B(fi, f;) = 0.

PRroOOF. Choose a pair of complementary Lagrangian subspaces, F, F".
Since B defines a non-degenerate pairing between F' and F’, it defines an

isomorphism, F’ = F*. Choose a basis e, ..., e, and define fi,..., fr € F’
by Bl(e;, f;) = %(5@-. It is automatic that B(e;, e;) = B(fi, fj) = 0 since F, F”
are Lagrangian. O

Our basis ey, ..., ek, fi,..., fr for a quadratic vector space (V, B) with

split bilinear form is not orthogonal. However, it may be replaced by an
orthogonal basis ~
Ei=ei+fi, Ei=ei— fi
12



CHAPTER 1. SYMMETRIC BILINEAR FORMS

In the new basis, the bilinear form reads,
(7) B(F;, E;) = 6, B(E;,Ej) =0, B(E;, E;) = —0;;.
The orthogonal group of F* & F will be discussed in detail in §4, Section

2.2 below. At this point, let us rephrase Proposition 3.4 in terms of the
splitting:

LEMMA 3.6. The subgroup of orthogonal transformations fixing all points
of ¥ C F* @& F consists of all transformations of the form

AD: (/JHU) = (M7U+DM)
where D: F* — F is skew-adjoint: D* = —D.

4. E.Cartan-Dieudonné’s Theorem

Throughout this Section, we assume that (V, B) is a quadratic vector
space. The following simple result will be frequently used.

LEMMA 4.1. For any A € O(V), the orthogonal of the space of A-fized
vectors equals the range of A — I:

ran(A — I) = ker(A — I)*.

Proor. For any L € End(V), the transpose LT relative to B satisfies
ran(L) = ker(LT)*. We apply this to L = A—1I, and observe that ker(AT —
I) = ker(A—1I) since a vector is fixed under A if and only if it is fixed under
AT =471 O

DEFINITION 4.2. An orthogonal transformation R € O(V) is called a
reflection if its fixed point set ker(R — I) has codimension 1.

Equivalently, ran(R — I) = ker(R — I)* is 1-dimensional. If v € V is a
non-isotropic vector, then the formula
B(v,w)
B(v,v) v

defines a reflection, since ran(R, — I) = span(v) is 1-dimensional.

Ry(w)=w—2

PROPOSITION 4.3. Any reflection R is of the form R,, where the non-
1sotropic vector v 1s unique up to a non-zero scalar.

PROOF. Suppose R is a reflection, and consider the 1-dimensional sub-
space F' = ran(R —I). We claim that F'is a quadratic subspace of V. Once
this is established, we obtain R = R, for any non-zero v € F', since R, then
acts as —1 on F and as +1 on F*. To prove the claim, suppose on the
contrary that F' is not quadratic. Since dim F' = 1 it is then isotropic. Let
F’ be an isotropic subspace such that F' + F’ is quadratic. Since R fixes
(F+ F")* ¢ F+ = ker(R — I), it may be regarded as a reflection of F + F.
This reduces the problem to the case dimV = 2, with FF C V maximal
isotropic, and R fixes F' pointwise. As we had seen, the group of such trans-
formations are identified with the additive group of skew-symmetric maps

13



4. E.CARTAN-DIEUDONNE’S THEOREM

F* — F, but for dim F' = 1 this group is trivial. Hence R is the identity,
contradicting dimran(R — I) = 1. O

Some easy properties of reflections are,
(1) det(R) = -1,
(2) B =1,
(3) if v is non-isotropic, AR,A~t = Ry, for all A € O(V),
(4) distinct reflections Ry # Ry commute if and only if the lines ran(R; —
I) and ran(Ry — I) are orthogonal.
The last Property may be seen as follows: suppose R1Ro = RoR;1 and apply
to vy € ran(R; — I). Then Ry(Rov1) = —Rov1, which implies that Rov; is a
multiple of vy; in fact Rovy = +wq since Ry is orthogonal. Since Rovy = —vy
would imply that Ry = Ry, we must have Rovq = v1, or v; € ker(Rg — I).
For any A € O(V), let I(A) denote the smallest number [ such that
A = Ry---R; where R; € O(V) are reflections. We put I(I) = 0, and
for the time being we put [(A) = oo if A cannot be written as such a
product. (The Cartan-Dieudonne theorem below states that [(A) < oo
always.) The following properties are easily obtained from the definition,

for all A, g, Ay, A2 € O(V),
(A™h) =1(4),
l(gAg™") = 1(A),
[[(A1) — 1(A2)| < 1(A1A2) < 1(A1) +1(A2),
det(A) = (—1)'

A little less obvious is the following estimate.

PROPOSITION 4.4. For any A € O(V), the number I(A) is bounded below
by the codimension of the fized point set:

dim(ran(A — 1)) < I(A).

PROOF. Let n(A) = dim(ran(A — I)). If Ay, A3 € O(V'), we have
ker(A1 Ay —I) D ker(A1 Ay — I)Nker(A; — I) = ker(Ay —I) Nker(Ay — 1)
Taking orthogonals,

ran(A1 Ay —I) Cran(As — I) +ran(A; — 1)
which shows
n(A1As) <n(A4;) +n(As).
Thus, if A= Ry --- R; is a product of [ = [(A) reflections, we have
n(A) <n(Rp)+...+n(R) =1(A). O
The following upper bound for [(A) is much more tricky:

THEOREM 4.5 (E.Cartan-Dieudonné). Any orthogonal transformation
A € O(V) can be written as a product of [(A) < dim V' reflections.

14



CHAPTER 1. SYMMETRIC BILINEAR FORMS

PRrOOF. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension < dimV — 1. We will consider three
cases.

Case 1: ker(A — I) is non-isotropic. Choose any non-isotropic vector
v € ker(A — I). Then A fixes the span of v and restricts to an orthogonal
transformation A; of Vi = span(v)*. Using the induction hypothesis, we
obtain

8) I(A) = I(A;) < dimV — 1.

Case 2: ran(A — I) is non-isotropic. We claim:

(C) There exists a non-isotropic element w € V such that v = (A—I)w
is non-isotropic.

Given v, w as in (C), we may argue as follows. Since v = (A — I)w, and
hence (A + I)w € span(v)*, we have

R,(A-—Dw=—-A—-TNw, R,(A+ITw=(A+1)w.

Adding and dividing by 2 we find R,Aw = w. Since w is non-isotropic,
this shows that the kernel of R, A — I is non-isotropic. Equation (8) applied
to the orthogonal transformation R, A shows [(R,A) < dimV — 1. Hence
[(A) < dim V. It remains to prove the claim (C). Suppose it is false, so that
we have:

(=C) The transformation A — I takes the set of non-isotropic elements
into the set of isotropic elements.

Let v = (A — I)w be a non-isotropic element in ran(A — I). By (=C)
the element w is isotropic. The orthogonal space span(w)= is non-isotropic
for dimensional reasons, hence there exists a non-isotropic element w; with
B(w,w;) = 0. Then w1, w+ w;, w—w; are all non-isotropic, and by (=C')
their images

v=A-Dw, v+vy=A-Hw+w), v—v1=(A—-1I)(w—w)
are isotropic. But then the polarization identity

Qp(v) = 3(Q@p(v+v1) + Qp(v —v1)) —Qp(v1) =0

shows that v is isotropic, a contradiction. This proves (C').

Case 3: Both ker(A — I) and ran(A — I) are isotropic. Since these
two subspaces are orthogonal, it follows that they are equal, and are both
Lagrangian. This reduces the problem to the case V = F* @ F, where
F = ker(A — I), that is A fixes F' pointwise. By Lemma 3.6 this implies
det(A) = 1. Let R, be any reflection, then Ay = R,A € O(V) has det(A4;) =
—1. Hence ker(A4; — I) and ran(A; — I) cannot be both isotropic, and by
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the first two cases [(A;) < dimV = 2dim F. But since det(A;) = —1, [(A;)
must be odd, hence [(A;) < dim V' and therefore [(A) < dim V. O

REMARK 4.6. Our proof of Cartan-Dieudonne’s theorem is a small mod-
ification of Artin’s proof in [7]. If char(K) = 2, there exist counterexamples
to the statement of the Theorem. See Chevalley [22, page 83].

5. Witt’s Theorem

The following result is of fundamental importance in the theory of qua-
dratic forms.

THEOREM 5.1 (Witt’s Theorem). Suppose F,F are subspaces of a qua-
dratic vector space (V, B), such that there exists an isometric isomorphism
¢: F = F, i.e. B(¢(v),d(w)) = B(v,w) for all v,w € F. Then ¢ extends
to an orthogonal transformation A € O(V').

ProOF. By induction, we may assume that the Theorem is true for
quadratic vector spaces of dimension < dimV — 1. We will consider two
cases.

Case 1: F' is non-isotropic. Let v € F' be a non-isotropic vector, and
let © = ¢(v). Then Qp(v) = Qp(v) # 0, and v+ and v — ¥ are orthogonal.
The polarization identity Qz(v)+Qp(V) = 1(Qp(v+0)+Qp(v—17)) show
that are not both isotropic; say w = v + ¥ is non-isotropic. The reflection
R, satisfies

Ry(v+70)=—(v+7), Rylv—10)=v—70.

Adding, and dividing by 2 we find that R, (v) = —0. Let Q@ = Ry R,. Then
@ is an orthogonal transformation with Q(v) = 0 = ¢(v).
Replacing F' with F' = Q(F), v with v = Q(v) and ¢ with ¢’ = poQ 1,

we may thus assume that F'N F' contains a non-isotropic vector v such that
p(v) =v. Let

Vi=span(v)t, Fi=FnV, FL=FnNV

and ¢ : Fy — Fy the restriction of ¢. By induction, there exists an orthogo-
nal transformation A; € O(V7) extending ¢1. Let A € O(V) with A(v) =v
and Aly, = Aj; then A extends ¢.

Case 2: F is isotropic. Let F’ be an isotropic complement to F-, and
let F’ be an isotropic complement to F-. The pairing given by B identifies
F' =~ F* and F' = F*. The isomorphism ¢: F — F extends to an isometry
V: F®F — F@F', given by (¢~1)* on F' = F*. By Case 1 above, ¢
extends further to an orthogonal transformation of V. ([

Some direct consequences are:

(1) O(V) acts transitively on the set of isotropic subspaces of any given
dimension.

16
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(2) If F, F are isometric, then so are F-, F-. Indeed, any orthogonal
extension of an isometry ¢: F' — F restricts to an isometry of their

orthogonals.
(3) Suppose F' C V is a subspace isometric to K", with standard bi-
linear form B(E;, E;) = 6;5, and F is maximal relative to this

property. If F/ C V is isometric to K”l, then there exists an or-
thogonal transformation A € O(V) with F' C A(F). In particular,
the dimension of such a subspace F' is an invariant of (V| B).

A subspace W C V of a quadratic vector space is called anisotropic if
it does not contain isotropic vectors other than 0. In particular, W is a
quadratic subspace.

PRroOPOSITION 5.2 (Witt decomposition). Any quadratic vector space
(V,B) admits a decomposition V.= F & F' & W where F,F' are maxi-
mal isotropic, W is anisotropic, and W+ =F @ F'. If V =F @ FleWw,
is another such decomposition, then there exists A € O(V) with A(F) =
F, A(F')=F{, A(W)=W.

ProOOF. To construct such a decomposition, let F' be a maximal isotropic
subspace, and F’ an isotropic complement to F-. Then F & F’ is quadratic,
hence so is W = (F @ F')1. Since F is maximal isotropic, the subspace
W cannot contain isotropic vectors other than 0. Hence W is anisotropic.
Given another such decomposition V = Fy @ F| @& W, choose an isomorphism
F = F;. As we had seen (e.g. in the proof of Witt’s Theorem), this extends
canonically to an isometry ¢: FF & F' — F; @ F|. Witt’s Theorem gives an
extension of ¢ to an orthogonal transformation A € O(V). It is automatic

that A takes W = (F @ F')* to W = (Fy @ F))*. O

ExaMmpLE 5.3. If K = R, the bilinear form on the anisotropic part of the
Witt decomposition is either positive definite (i.e. @p(v) > 0 for non-zero
v € W) or negative definite (i.e. @Qp(v) < 0 for non-zero v € W). By
Proposition 1.3, any quadratic vector space (V, B) over R is isometric to
R™™ for some n, m. The Witt decomposition shows that n, m are uniquely
determined by B. Indeed min(n,m) is the Witt index of B, while the sign
of n — m is given by the sign of Qg on the anisotropic part.

6. Orthogonal groups for K =R,C

In this Section we discuss the structure of the orthogonal group O(V')
for quadratic vector spaces over K =R or C.

Being a closed subgroup of GL(V'), the orthogonal group O(V) is a Lie
group. Recall that for a Lie subgroup G C GL(V), the corresponding Lie
algebra g is the subspace of all { € End(V) with the property exp(t§) € G
for all ¢ € K (using the exponential map of matrices). We have:

PROPOSITION 6.1. The Lie algebra of O(V') is given by
o(V)={A € End(V)| B(Av,w)+ B(v, Aw) =0 for all v,w € V},
17
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with bracket given by commutator.

PROOF. Suppose A € o(V), so that exp(tA) € O(V) for all ¢. Taking
the t-derivative of B(exp(tA)v,exp(tA)w) = B(v,w) we obtain B(Av,w) +
B(v, Aw) = 0 for all v,w € V. Conversely, given A € gl(V) with B(Av,w)+
B(v, Aw) = 0 for all v,w € V we have

0 ket
B(exp(tA)v,exp(tA)w) = Z - B(A*v, Alw)

o0 tk k
= B(v, AFw) Z ( )
k:O 1=0
= B(v,w)
since Zfzo(—l)i(’;) = k0. O

Thus A € o(V) if and only if B0 A: V — V* is a skew-adjoint map. In
particular

dimg o(V) = N(N —1)/2

where N =dim V.

Let us now first discuss the case K = R. We have shown that any
quadratic vector space (V, B) over R is isometric to R™™, for unique n, m.
The corresponding orthogonal group will be denoted O(n,m), the special
orthogonal group SO(n,m), and its identity component SOg(n,m). The
dimension of O(n,m) coincides with the dimension of its Lie algebra o(n, m),
N(N —1)/2 where N =n+m. If m = 0 we will write O(n) = O(n,0) and
SO(n) = SO(n,0). These groups are compact, since they are closed subsets
of the unit ball in Mat(n,R).

LEMMA 6.2. The groups SO(n) are connected for all n > 1, and have
fundamental group 71 (SO(n)) = Zg for n > 3.

PRrROOF. The defining action of SO(n) on R™ restricts to a transitive
action on the unit sphere S"~!, with stabilizer at (0, ...,0,1) equal to SO(n—
1). Hence, for n > 2 the Lie group SO(n) is the total space of a principal
fiber bundle over S"~!, with fiber SO(n — 1). This shows by induction that
SO(n) is connected. The long exact sequence of homotopy groups

ce— WQ(S”_l) — 71 (SO(n —1)) = 71 (SO(n)) — 7r1(S"_1)
18
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shows furthermore that the map 71 (SO(n — 1)) — 71(SO(n)) is an isomor-
phism for n > 3 (since mo(S™ 1) = 0 in that case). But m1(SO(3)) = Zo,
since SO(3) is diffeomorphic to RP(3) = S3/Zy (see below). O

The groups SO(3) and SO(4) have a well-known relation with the group
SU(2) of complex 2 x 2-matrices X satisfying XT = X! and det X = 1.
Recall that the center of SU(2) is Zo = {+1I,—1}.

PROPOSITION 6.3. There are isomorphisms of Lie groups,
SO(3) =SU(2)/Zy, SO(4) = (SU(2) x SU(2))/Zs

where in the second equality the quotient is by the diagonal subgroup Zo C
Zg X ZQ.

PRrROOF. Consider the algebra of quaternions H = C? = R?,

H-{X-( c w),z,wEC}.
-w Z

1
For any X € H let || X|| = (|22 +|w|?)2. Note that XTX = XXT = || X||>T
for all X € H. Define a symmetric R-bilinear form on H by

B(X1, X2) = 1 tr(X] Xy).

The identification H =2 R* takes this to the standard bilinear form on R*
since B(X,X) = 3||X|[>tr(I) = ||X|[>. The unit sphere S3 C H, charac-
terized by || X||> = 1 is the group SU(2) = {X| XT = X1, det(X) = 1}.
Define an action of SU(2) x SU(2) on H by

(X1,X2)- X = X1 XX, 1.

This action preserves the bilinear form on H = R* and hence defines a
homomorphism SU(2) x SU(2) — SO(4). The kernel of this homomorphism
is the finite subgroup {+(I,1)} = Z;. (Indeed, X; XX, ' = X for all X
implies in particular X; = XX, X! for all invertible X. But this is only
possible if X; = X9 = £I.) Since dimSO(4) = 6 = 2dimSU(2), and
since SO(4) is connected, this homomorphism must be onto. Thus SO(4) =
(SU(2) x SUR){=(1, D}.

Similarly, identify R3 2 {X € H| tr(X) = 0} = span(I)*. The conjuga-
tion action of SU(2) on H preserves this subspace; hence we obtain a group
homomorphism SU(2) — SO(3). The kernel of this homomorphism is Zy =
{£I} C SU(2). Since SO(3) is connected and dim SO(3) = 3 = dim SU(2),
it follows that SO(3) = SU(2)/{%I}. O

To study the more general groups SO(n,m) and O(n,m), we recall the
polar decomposition of matrices. Let

Sym(k) = {A| AT = A} C gl(k,R)
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be the space of real symmetric k x k-matrices, and Sym™ (k) its subspace
of positive definite matrices. As is well-known, the exponential map for
matrices restricts to a diffeomorphism,
exp: Sym(k) — Sym™(k),
with inverse log: Sym™ (k) — Sym(k). Furthermore, the map
O(k) x Sym(k) — GL(k,R), (O,X) — OeX

is a diffeomorphism. The inverse map

GL(k,R) — O(k) x Sym(k), — (A|A|™*,1log|A]|),
where |A| = (ATA)Y/2, is called the polar decomposition for GL(k,R). We

will need the following simple observation:

LEMMA 6.4. Suppose X € Sym(k) is non-zero. Then the closed subgroup
of GL(k,R) generated by eX is non-compact.

PROOF. Replacing X with —X if necessary, we may assume |[eX|| > 1.
But then [|e"X]|| = ||e¥]||" goes to co for n — occ. O

This shows that O(k) is a maximal compact subgroup of GL(k,R). The
polar decomposition for GL(k, R) restricts to a polar decomposition for any
closed subgroup G that is invariant under the involution A — A". Let

K =GnO(k,R), P=GNSym"(k), p =gnSym(k).

The diffeomorphism exp: Sym(k) — Sym™ (k) restricts to a diffeomorphism
exp: p — P, with inverse the restriction of log. Hence the polar decompo-
sition for GL(k, R) restricts to a diffeomorphism

Kxp—G

whose inverse is called the polar decomposition of G. (It is a special case
of a Cartan decomposition.) Using Lemma 6.4, we see that K is a maximal
compact subgroup of G. Since p is just a vector space, K is a deformation
retract of G.

We will now apply these considerations to G = O(n, m). Let By be the
standard bilinear form on R”*™, and define the endomorphism J by

B(v,w) = By(Jv,w).

Thus J acts as the identity on R" &0 and as minus the identity 0 @ R™, and
an endomorphism of R™”™™ commutes with J if and only if it preserves the
direct sum decomposition R"*™ = R" & R™. A matrix A € Mat(n + m,R)
lies in O(n,m) if and only if ATJA = J, where T denotes as before the
usual transpose of matrices, i.e. the transpose relative to By (not relative
to B). Similarly X € o(n,m) if and only if X .J + JX = 0.

REMARK 6.5. In block form we have

I, 0
= (5 5
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For A € Mat(n 4+ m,R) in block form

® a=(t )

we have A € O(n, m) if and only if
(10) a'la=I+c'e, d'd=T+b"b, a'b=c"d.
Similarly, for X € Mat(n + m,R), written in block form

(11) X:(i?)

we have X € o(n,m) if and only if
(12) al =—a, B =~, 6" = -4,

Since O(n,m) is invariant under A + A", (and likewise for the spe-
cial orthogonal group and its identity component) the polar decomposition
applies. We find:

PROPOSITION 6.6. Relative to the polar decomposition of GL(n+m,R),
the mazimal subgroups of

G = O(n,m), SO(n,m), SOg(n,m),
are, respectively,
K =0(n) x O(m), S(O(n) x O(m)), SO(n) x SO(m).
(Here S(O(n) x O(m)) are elements of (O(n) x O(m)) of determinant 1.)

In oll of these cases, the space p in the Cartan decomposition is given by

matrices of the form
_ 0 =z
P= zT 0

where x is an arbitrary n X m-matriz.

PRrROOF. We start with G = O(n,m). Elements in K = G N O(n + m)
are characterized by ATJA = J and ATA = I. The two conditions give
AJ = JA, so that A is a block diagonal element of O(n + m). Hence
A € 0(n)xO(m) C O(n,m). This shows K = O(n) x O(m). Elements X €
p = o(n, m)NSym(n+m) satisfy X "J+JX = 0and X = X, hence they are
symmetric block off-diagonal matrices. This proves our characterization of p,
and proves the polar decomposition for O(n, m). The polar decompositions
for SO(n,m) is an immediate consequence, and the polar decomposition
for SOg(n,m) follows since SO(n) x SO(m) is the identity component of
S(O(n) x O(m)). O

COROLLARY 6.7. Unless n = 0 or m = 0 the group O(n,m) has four
connected components and SO(n, m) has two connected components.

We next describe the space P = exp(p).
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PROPOSITION 6.8. The space P = exp(p) C G consists of matrices

"= {< (I+(l)7$T)1/2 (I+bbTb)1/2 >}

where b ranges over all n X m-matrices. In fact,

| (I+bb")1/2 b (0 =z
0g bT (I+bTb)1/2 - .TT 0

where x and b are related as follows,

(13) b sinh(a:TxT)x’ _ arsinh((bb")1/2)
T (bbT)1/2
Note that 22" (resp. bb") need not be invertible. The quotient M

T
is to be interpreted as f(xz ") where f(z) is the entire holomorphic function

%, and f(zz") is given in terms of the spectral theorem or equivalently

in terms of the power series expansion of f.

0 =«
' 0

This gives

PrOOF. Let X = < ) By induction on k,

cosh(zz ") snﬂ;gcixgﬂac )

exp(X) = :
(:Umz(f;x) cosh(z ")

; T
which is exactly the form of elements in P with b = %m The equation

cosh(zzT) = (1+bb")Y/2 gives sinh(zz ") = (bb")'/2. Plugging this into the
formula for b, we obtain the second equation in (13). O

For later reference, we mention one more simple fact about the orthog-
onal and special orthogonal groups. Let Zy be the center of GL(n + m,R)
consisting of £1.

PROPOSITION 6.9. For all n,m, the center of the group O(n,m) is Zs.
FEzcept in the cases (n,m) = (0,2),(2,0), the center of SO(n,m) is Zg if —1
lies in SO(n,m), and is trivial otherwise. The statement for the identity
component is similar.

The proof is left as an exercise. (Note that the elements of the center
of G commute in particular with the diagonal elements of G. In the case of
hand, one uses this fact to argue that the central elements are themselves
diagonal, and finally that they are multiples of the identity.)

The discussion above carries over to K = C, with only minor modi-
fications. It is enough to consider the case V = C", with the standard
symmetric bilinear form. Again, our starting point is the polar decomposi-
tion, but now for complex matrices. Let Herm(n) = {A| AT = A} be the
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space of Hermitian n x n matrices, and Herm™ (n) the subset of positive
definite matrices. The exponential map gives a diffeomorphism

Herm(n) — Herm™ (n), X — e*.
This is used to show that the map
U(n) x Herm(n) — GL(n,C), (U,X)~ Ue~

is a diffeomorphism; the inverse map takes A to (Ae X, X) with X =
%log(ATA). The polar decomposition of GL(n,C) gives rise to polar de-
compositions of any closed subgroup G C GL(n,C) that is invariant under
the involution f. In particular, this applies to O(n,C) and SO(n,C). In-
deed, if A € O(n,C), the matrix ATA lies in O(n,C) N Herm(n), and hence
its logarithm X = 1 log(ATA) lies in o(n,C) N Herm(n). But clearly,
O(n,C)NnU(n) = O(n,R),
SO(n,C) N U(n) = SO(n,R)
while
o(n,C) NHerm(n) = v—1o(n,R).
Hence, the maps (U, X) — U eX restrict to polar decompositions
O(n,R) x vV—1o(n,R) — O(n,C),
SO(n,R) x vV—1o(n,R) — SO(n,C),
which shows that the algebraic topology of the complex orthogonal and spe-
cial orthogonal group coincides with that of its real counterparts. Arguing
as in the real case, the center of O(n,C) is given by {+I,—I} while the

center of SO(n,C) is trivial for n odd and {+I,—1} for n even, provided
n > 3.

7. Lagrangian Grassmannians

If (V,B) is a quadratic vector space with split bilinear form, denote
by Lag(V) the set of Lagrangian subspaces. Recall that any such V is
isomorphic to K™" where dimV = 2n. For K = R we have the following
result.

THEOREM 7.1. Let V' = R™" with the standard basis satisfying (7). Then
the mazximal compact subgroup O(n) x O(n) of O(n,n) acts transitively on
the space Lag(R™™) of Lagrangian subspaces, with stabilizer at

(14) Ly = span{E; + Ei,....,E,+ En}
the diagonal subgroup O(n)a. Thus
Lag(R™") = O(n) x O(n)/ O(n)a = O(n).
In particular, it is a compact space with two connected components.
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PROOF. Let By be the standard positive definite bilinear form on the
vector space R™" = R?"  with corresponding orthogonal group O(2n). In-
troduce an involution J € O(2n), by

B(v,w) = By(Jv,w).

That is JE; = E;, JE; = —E;. Then the maximal compact subgroup
O(n) x O(n) consists of all those transformations A € O(n,n) which com-
mute with J. At the same time, O(n) x O(n) is characterized as the orthog-
onal transformations in O(2n) commuting with J.

The +1 eigenspaces Vi of J are both anisotropic, i.e. they do not
contain any isotropic vectors. Hence, if L C R™" is Lagrangian, then J(L)
is transverse to L:

LNJL)=(LnNnVy)e(LNV_)=0.
For any L, we may choose a basis vi,...,v, that is orthonormal relative
to By. Then vy,...,v,, J(v1),...,J(v,) is a Bg-orthonormal basis of R™".

If L is another Lagrangian subspace, with By-orthonormal basis v}, ..., v/,
then the orthogonal transformation A € O(2n) given by

Avi=l, AJ(v) = (), i=1,....n

1
commutes with J, hence A € O(n) x O(n). This shows that O(n) x O(n)
acts transitively on Lag(R™™). For the Lagrangian subspace (14), with
v = %(E, + E), the stabilizer of Ly under the action of O(n) x O(n)
consists of those transformations A € O(n) x O(n) for which vf,..., v, is
again a Bp-orthonormal basis of Lg. But this is just the diagonal subgroup

O(n)a € O(n) x O(n). Finally, since the multiplication map
(O(n) x {1}) x O(n)a — O(n) x O(n)

is a bijection, the quotient is just O(n). O

Theorem 7.1 does not, as it stands, hold for other fields K. Indeed, the
group O(n,K) x O(n,K) takes Ly to a Lagrangian subspace transverse to
V., V_. However, there may be other Lagrangian subspaces: E.g. it K=C
and n = 2, the span of F; + v/—1Fs and E; + +/—1F> is a Lagrangian
subspace not transverse to V. Nonetheless, there is a good description of
the space Lag in the complex case K = C.

THEOREM 7.2. The space of Lagrangian subspaces of V. = C?*™ is a
homogeneous space
Lag(C?™) = O(2m)/ U(m).
In particular, it is a compact space with two connected components.
PROOF. Let v — ¥ be complex conjugation in C*™. Then (v,w) =

B(v,w) is the standard Hermitian inner product on C?™. Let Ly C C*™ be
the Lagrangian subspace spanned by

(El -V _1Em+1)? <oy Um
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where E1, ..., Esy, is the standard basis of C*™. Note that v1,..., v is
orthonormal for the Hermitian inner product, and vi,...,Um,01,...,0m
is an orthonormal basis of C?™. If L’ is another Lagrangian subspace,

with orthonormal basis vf,...,v), € L', then the unitary transformation

rrm
A € U(2m) taking v;,7; to v}, v, commutes with complex conjugation,
hence it actually lies in O(2m). This shows that O(2m) acts transitively
on Lag(C?™). The transformations A € O(2m) C U(2m) preserving L¢ are
those for which v, = A(v;) is again an orthonormal basis of L. Hence, the

stabilizer of L is U(m) C O(2m). O

REMARK 7.3. The orbit of Ly under O(m,C) x O(m,C) is open and
dense in Lag(C?™), and as in the real case is identified with O(m,C). Thus,
Lag(C?™) is a smooth compactification of the complex Lie group O(m, C).

Theorem 7.2 has a well-known geometric interpretation. View C?>™ as
the complexification of R?™. Recall that an orthogonal complex structure on
R?™ is an automorphism J € O(2m) with J2 = —I. We denote by .Jy the
standard complex structure.

Let J(2m) denote the space of all orthogonal complex structures. It car-
ries a transitive action of O(2m), with stabilizer at Jy equal to U(m). Hence
the space of orthogonal complex structures is identified with the complex
Lagrangian Grassmannian:

J(2m) = O0(2m)/U(m) = Lag(C*™).
Explicitly, this correspondence takes J € J(2m) to its ++/—1 eigenspace
L = ker(J — v—11I).

This has complex dimension m since C*™ = L & L, and it is isotropic since
v € L implies

B(v,v) = B(Jv, Jv) = B(vV/~1v,v/~1v) = —B(v,v).

Any Lagrangian subspace L determines J, as follows: Given w € R?", we
may uniquely write w = v + U where v € L. Define a linear map J by
Jw := —2Im(v). Then v = w — v/—1Jw. Since L is Lagrangian, we have

0= B(v,v) = Blw — vV—-1Jw,w — vV—1Jw)
= B(w,w) — B(Jw, Jw) — 2¢/—1B(w, Jw),

which shows that J € O(2m) and that B(w, Jw) = 0 for all w. Multiplying
the definition of J by v/—1, we get

V—1lv=+v—-1lw+ Jw
which shows that J(Jw) = —w. Hence J is an orthogonal complex structure.

REMARK 7.4. Let Isomax(R™™) denote the set of maximal isotropic sub-
spaces of R™™. Then Isopax(R™™) = Lag(R™"). For n < m the space
Is0max (R™™) is isomorphic to O(m)/ O(m — n).
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REMARK 7.5. There are parallel results in symplectic geometry, for vec-
tor spaces V with a non-degenerate skew-symmetric linear form w. If K = R,
any such V is identified with R?” = C" with the standard symplectic form,
Lo =R"™ C C" is a Lagrangian subspace, and the action of U(n) C Sp(V,w)
on Lg identifies

Lag, (R*") 2 U(n)/ O(n)

For the space Lag(V) of complex Lagrangian Grassmannian subspaces of
the complex symplectic vector space C?" = H"” one has

Lag,, (C*") = Sp(n)/U(n)

where Sp(n) is the compact symplectic group (i.e. the quaternionic unitary
group). See e.g. [28, p.67].
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CHAPTER 2

Clifford algebras

Associated to any vector space V with bilinear form B is a Clifford al-
gebra Cl(V; B). In the special case B = 0, the Clifford algebra is just the
exterior algebra A(V'), and in the general case the Cllifford algebra can be
regarded as a deformation of the exterior algebra. In this Chapter, after con-
structing the Clifford algebra and describing its basic properties, we study
in some detail the quantization map ¢: A (V) — CL(V; B) and justify the
term ‘quantization’. Throughout, we assume that V is a finite-dimensional
vector space over a field K of characteristic 0.

1. Exterior algebras

1.1. Definition. For any vector space V over a field K, let T(V) =
@Dz, TF(V) be the tensor algebra, with T*(V) = V ® -+ ® V the k-fold
tensor product. The quotient of T'(V') by the two-sided ideal Z(V') generated
by all v ® w + w ® v is the exterior algebra, denoted A(V'). The product in
A(V) is usually denoted ag A g, although we will frequently omit the wedge
symbol and just write ajae. Since Z(V') is a graded ideal, the exterior
algebra inherits a grading

ANV) =P Ak v)

keZ

where AF(V) is the image of T%(V') under the quotient map. We will write
|p| = k if ¢ € AF(V). Clearly, A°(V) = K and AY(V) = V so that we
can think of V' as a subspace of A(V). We may thus think of A(V) as
the associative algebra linearly generated by V, subject to the relations
vAw+wAv=0.

Throughout, we will regard A(V') as a graded super algebra, where the
Zo-grading is the mod 2 reduction of the Z-grading.! Thus tensor products,
derivations, and other constructions with A(V) are all understood in the
super sense, often without further specification. Since

(1, 2] = D1 A po + (—1)F1*25 A py =0

for ¢p1 € AF1 (V) and ¢y € AF2(V), we see that A(V) is commutative (as a
super algebra).

IWe refer to Appendix A for terminology and background regarding super vector
spaces.
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If V has dimension n, with basis ey, ..., ey, the space A¥(V) has basis
er =¢e; N---Nej,

for all ordered subsets I = {i1,...,ix} of {1,...,n}. (If & = 0, we put

n

ep = 1.) In particular, we see that dim A*(V)) = (}), and

dim A(V) = znj (Z) =9,

k=0

Letting e’ € V* denote the dual basis to the basis e; considered above, we
define a dual basis to e; to be the basis e/ = e/t A .- Aelt € A(V¥).

1.2. Universal property, functoriality. The exterior algebra is char-
acterized among graded super algebras by its universal property: If A is
a graded super algebra, and f: V — Al a linear map with f(v)f(w) +
f(w)f(v) = 0 for all v,w € V, then f extends uniquely to a morphism of
graded super algebras fi: A (V) — A. Similar universal properties char-
acterize A(V') in the categories of algebras, super algebras, graded algebras,
filtered algebras, or filtered super algebras.

Any linear map L: V' — W extends uniquely (by the universal property,
applied to L viewed as a map into V' — A(W)) to a morphism of graded
super algebras A(L): A (V) — A(W). One has

/\(Ll o LQ) = /\(Ll) o /\(Lg), /\(idv) = id/\(v) .

As a special case, taking L to be the zero map 0: V' — V the resulting

algebra homomorphism A(0) is the augmentation map (taking ¢ € A(V) to

its component in A°(V) = K). Taking L to be the map v + —v, the map

A(L) is the parity homomorphism I1 € Aut(A(V)), equal to (—1)* on AF(V).
The functoriality gives an algebra homomorphism

End(V) = Endas (A(V)), A= A(A)
2 and, by restriction to invertible elements, a group homomorphism
GL(V) = Autag(A(V)), 9= Alg)

into the group of degree preserving algebra automorphisms of A(V). We
will often write g in place of A(g), but reserve this notation for invertible
transformations since e.g. A(0) # 0.

Suppose Vi, Vs are two vector spaces. Then A(V7) ® A(Va) (tensor prod-
uct of graded super algebras) with the natural inclusion of V; @ V; satisfies
the universal property of the exterior algebra over V; & V. Hence the mor-
phism of graded super algebras

AVE @ Vo) = A(V1) @ A(Va)

2If A is any algebra, we denote by End(A) (resp. Aut(.A)) the vector space homo-
morphisms (res. automorphisms) A — A, while Endaig(A) (resp. Autag(V)) denotes the
set of algebra homomorphisms (resp. group of algebra automorphisms).

28



CHAPTER 2. CLIFFORD ALGEBRAS

intertwining the two inclusions is an isomorphism. As a special case, A(K™) =
ANK) ® -+ ® A(K).

The space Der(AV) of derivations of the graded super algebra AV is a
left module over A(V'), since A(V') is commutative. Any such derivation is
uniquely determined by its restriction to the space V' C A(V) of generators,
and conversely any linear map V' — A(V') extends to a derivation. Thus

Der(AV) = Hom(V, AV)
as graded super vector spaces, where the grading on the right hand side is
Hom*(V, AV)) = Hom(V, AFH1(V)).
In particular, Der®(AV) vanishes if & < —1. Elements of the space

Der }(AV) = Hom(V,K) = V* are called contractions. Explicitly, the
derivation ¢(«) corresponding to ao € V* is given by ¢(a)1 = 0 and

k

(15)  da)(n Ao) = D (-1 Hasw) o Ao A
i=1

for v1,...,vr € V. The contraction operators satisfy ¢(a)c(8) +¢(8)e(a) =0
for o, 5 € V*. Hence the map ¢: V* — End(A(V)) extends, by the universal
property, to a morphism of super algebras

v A (V) = End(AV).

This map takes A¥(V*) to End *(AV), hence it becomes a morphism of
graded super algebras if we use the opposite Z-grading on AV™*.

On the other hand, left multiplication defines a morphism of graded
super algebras

e: N(V)—= End(A(V)),

called exterior multiplication. The operators €(v) for v € V and «(«) for
a € V* satisfy commutator relations,

[e(v), e(w)] = €e(v)e(w) + e(w)e(v) =
(16) [t(a), L(B)] = v(a)u(B) + v(B)u(a) =
[t(a),e(v)] = ta)e(v) + e(v)i(a) = {a,v).

For later reference, observe that
ker(v(a)) = ran(e(a)) = A(ker(a)) C A(V)

for all @ € V*. (To see this, decompose V into ker(a) an a complement V7,
and use that A(V) = A(ker(a)) ® A(V1).) Similarly, ker(e(v)) = ran(e(v)) is
the ideal generated by span(v).

2. Clifford algebras

Clifford algebras are a generalization of exterior algebras, defined in the
presence of a symmetric bilinear form.
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2.1. Definition and first properties. Let V be a vector space over
K, with a symmetric bilinear form B: V x V — K (possibly degenerate).

DEFINITION 2.1. The Clifford algebra Cl(V; B) is the quotient
CI(V; B) =T(V)/Z(V; B)
where Z(V; B) C T(V) is the two-sided ideal generated by all elements of

the form
VW +w®v—2B(v,w)l, v,weV.

Clearly, C1(V;0) = A(V).

PROPOSITION 2.2. The inclusion K — T(V) descends to an inclusion
K — CIV;B). The inclusion V- — T(V) descends to an inclusion V —
Cl(V; B).

Proor. Consider the linear map
f:V = End(A(V)), v e(v) + o(B’(v)).

and its extension to an algebra homomorphism fr: T(V) — End(A(V)).
The commutation relations (16) show that f(v) f(w)+f(w) f(v) = 2B(v, w)1.
Hence fr vanishes on the ideal Z(V'; B), and therefore descends to an algebra
homomorphism

(17) far: CI(V; B) — End(A(V)),

ie. faom = fr where m: T(V) — CI(V;B) is the projection. Since
fr(1) =1, we see that m(1) # 0, i.e. the inclusion K < T'(V') descends to
an inclusion K — CI(V; B). Similarly, from fr(v).1 = v we see that the
inclusion V' < T'(V') descends to an inclusion V' — CI(V; B). O

The Proposition shows that V' is a subspace of C1(V; B). We may thus
characterize Cl(V; B) as the unital associative algebra, with generators v €
V' and relations

(18) vw 4wy = 2B(v,w), v,we V.

Let us view T(V) = @, T*(V) as a filtered super algebra (cf. Appendix A),
with the Zs-grading and filtration inherited from the Z-grading. Since the
elements v @ w+ w®v —2B(v,w)1 are even, of filtration degree 2, the ideal
Z(V; B) is a filtered super subspace of T'(V'), and hence C1(V; B) inherits
the structure of a filtered super algebra. Simply put, the Zs-grading and
filtration on Cl(V; B) are defined by the condition that the generators v € V
are odd, of filtration degree 1. In the decomposition

CI(V; B) = CI°(V; B) & C1}(V; B)

the two summands are spanned by products v; - -- v with k£ even, respec-
tively odd. From now on, we will always regard C1(V; B) as a filtered super
algebra (unless stated otherwise), in particular commutators |-, -] will be in
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the Zs-graded sense. In this notation, the defining relations for the Clifford
algebra become

[v,0] = 2B(v,w), v,we V.

If dim V' = n, and e; are an orthogonal basis of V', then (using the same
notation as for the exterior algebra), the products

er=¢e;, €., I={i,...,ix} C{1,...,n},

with the convention ey = 1, span Cl(V; B). We will see in Section 2.5 that
the e; are a basis.

2.2. Universal property, functoriality. The Clifford algebra is char-
acterized by the following universal property:

PROPOSITION 2.3. Let A be a filtered super algebra, and f: V — AW ¢
linear map satisfying

f(o1) f(v2) + f(v2) f(v1) = 2B(v1,v2) - 1, wi,vp € V.

Then f extends uniquely to a morphism of filtered super algebras C1I(V; B) —
A.

PRrROOF. By the universal property of the tensor algebra, f extends to
an algebra homomorphism fr: T(V) — A. The property f(v1)f(va) +
f(v2) f(v1) = 2B(v1,v2) - 1 shows that f vanishes on the ideal Z(V; B), and
hence descends to the Clifford algebra. Uniqueness is clear, since the Clifford
algebra is generated by elements of V. ([

REMARK 2.4. We can also view C1(V; B) just as super algebra (forget-
ting the filtration), as a filtered algebra (forgetting the Zs-grading), or as
an (ordinary) algebra, and formulate universal properties for each of these
contexts.

Suppose Bi, By are symmetric bilinear forms on Vi, Vo, and f: Vi — V3
is a linear map such that

BZ(f(U)vf(w)) = Bl(U,U}), v,w € Vl-

Viewing f as a map into Cl(V5; Bs), the universal property provides a unique
extension to a morphism of filtered super algebras

CI(f): CL(V1; B1) — Cl(Va; Bz).
Clearly,
Cl(f1 0 f2) = Cl(f1) o Cl(f2), Cl(idv) = idgyv)-
The functoriality gives in particular a group homomorphism
O(V; B) — Aut(Cl(V; B)), g+ Cl(g)

into automorphisms of C1(V; B) (preserving Zs-grading and filtration). We
will usually just write g in place of Cl(g). For example, the involution
v — —uv lies in O(V; B), hence it defines an involutive algebra automorphism
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IT of C1(V; B) called the parity automorphism. The +1 eigenspaces are the
even and odd part of the Clifford algebra, respectively.

Suppose again that (V;, By) and (Va, B2) are two vector spaces with
symmetric bilinear forms, and consider the direct sum (Vi @ Vo, By @ B3).
Then

CI(Vi @ Va; By ® By) = CI(Vi; By)  Cl(Va; B)
as filtered super algebras. This follows since Cl(V7; B1) ® Cl(Va; Bs) satisfies
the universal property of the Clifford algebra over (Vi @ Va; B1 @ Bz). In
particular, if Cl(n,m) denotes the Clifford algebra for K™™ we have

Cl(n,m)=CI(1,0) ® --- ® CI(1,0) ® C1(0,1) ® - - - ® CI(0, 1),
(using the Zg-graded tensor product).

2.3. The Clifford algebras Cl(n,m). Consider the case K = R. For
n, m small one can determine the algebras Cl(n, m) = CI(R™™) by hand.

PRrROPOSITION 2.5. For K = R, one has the following isomorphisms of
the Clifford algebras Cl(n,m) with n +m < 2:

Cl1(0,1) = C, I(z) =z,
Cl(1,0) =R &R, I(u,v) = (v,u),
C1(0,2) = ( - ) ie. TI(A) =4,

CI(1,1) = Mata(R), TI= Ad< oY )

C1(2,0) = Mata(R), Tl = Ad ( i ) .
Here C and H are viewed as algebras over R, and Maty(R) = End(R?) is
the algebra of real 2 X 2-matrices.

PROOF. By the universal property, an algebra A of dimension 2" is
isomorphic to Cl(n,m) if there exists a linear map f: R™™ — A satisfying
f(es)f(ej)+ f(ej)f(ei) = £28;5, with a plus sign for ¢ < n and a minus sign
for ¢ > n. We write down these maps for n +m < 2:

C1(0, 1)
fler) = V-1
C1(1,0)
Fle) = (1.-1).
C1(0, 2)
re= (V5 ) e =( A )
Cl(1,1)
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s =1 ¢) se=(5 %)

One easily checks that the indicated automorphism II is +1 on the even part
and —1 on the odd part. (For n 4+ m = 2 the parity automorphism is given
as conjugation by f(e1)f(ez2), see 2.7 below.) O

C1(2,0)

The full classification of the Clifford algebras Cl(n,m) may be found
in the book by Lawson-Michelsohn [51] or in the monograph by Budinich-
Trautman [16]. The Clifford algebras Cl(n, m) exhibit a remarkable mod 8
periodicity. For any algebra A over K (her K = R), let Maty(A) = A®
Maty(K) be the algebra of k£ x k matrices with entries in 4. Then

Cl(n + 8,m) = Mati6(Cl(n,m)) = Cl(n,m + 8).
These isomorphisms are related to the mod 8 periodicity in real K-theory
[8].

2.4. The Clifford algebras Cl(n). For K = C the pattern is simpler.
Denote by Cl(n) the Clifford algebra of C".

PROPOSITION 2.6. One has the following isomorphisms of algebras over
C,
Cl(2m) = Matam(C), Cl(2m + 1) = Matam (C) @ Matam (C).
More precisely, Cl(2m) = End(AC™) as a super algebra, while Cl(2m+1) =

End(AC™) @ (C® C) as a super algebra, where the parity automorphism of
Ce C is (u,v) = (v,u), and using the tensor product of super algebras.

PrOOF. Consider first the case n = 2. The map f: C?> — End(C?),

sen=(10) ser=( g ¥oh)

extends, by the universality property, to an isomorphism CI(2) — End(C?).
The resulting Zo-grading on End(C?) is induced by the Zs-grading on C?
where the first component is even and the second is odd. Equivalently, it
corresponds to the identification C? = AC. This shows CI(2) = End(AC) as
super algebras. For C?" = C? @ - - - ® C? we hence obtain

Ci(2m)=CI2)®---® (Cl( )
= End(/\(C) - ® End(AC)
=End(A\C®---® AC)
= End(/\(Cm),
as super algebras (using the tensor product of super algebras).

For n =1 we have CI(1) = C @ C with parity automorphism II(u,v) =
(v,u), by the same argument as for the real Clifford algebra CI(1,0). Hence

Ci(2m+1) =Ci(2m) ® Cl(1) = End(AC™) ® (C&® C)
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as super algebras. O

The mod 2 periodicity
Cl(n + 2) = Maty(Cl(n))

apparent in this classification result is related to the mod 2 periodicity in
complex K-theory [8].

REMARK 2.7. The result shows in particular that there is an isomor-
phism of (ungraded) algebras,

Cl(2m — 1) = CI°(2m).

This can be directly seen as follows: By the universal property, the map
Cc?m=l 5 Ci°(2m), e; — V-1 eieam for i < 2m extends to an algebra
homomorphism CI(2m — 1) — CI°(2m).

2.5. Symbol map and quantization map. We now return to the
representation

for: CIV; B) = End(AV),  fai(v) = e(v) + (B (v))

of the Clifford algebra, (see (17)). One defines the symbol map by the action
on the element 1 € A(V):

o: Cl(V;B) = A(V), x— fa(z).1
where 1 € AO(V) = K.

PROPOSITION 2.8. The symbol map is an isomorphism of filtered super
vector spaces. In low degrees,

(1)=1
(v) =w

o(vive) = v A ve + B(v1,v2),

o
(o

O'(Ulvgvg) =1 A V2 A V3 + B(Ug, 2)3)1)1 — B(Ul, 1)3)’1)2 + B(U1, 1)2)1)3.

PROOF. Let e; € V' be an orthogonal basis. Since the operators f(e;)
commute (in the grade sense), we find

o(ei, - -eip) = e, N+ Aeiy,

for 1 < --- < ig. This directly shows that the symbol map is an isomor-
phism: It takes the element e; € ClI(V;B) to the corresponding element
er € A(V). The formulas in low degrees are obtained by straightforward
calculation. U

The inverse of the symbol map is called the quantization map
qg: N(V)— ClV;B).
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In terms of the basis, g(e;) = e;. In low degrees,
q(1) =1,
q(v) =,
q(v1 A va) = vivg — B(v1,v9),

q(v1 A vy A vg) = vivevs — B(ve, v3)v1 + B(vy, v3)va — B(vi, v2)vs.

PROPOSITION 2.9. The symbol map induces an isomorphism of graded
super algebras,
gr(CL(V)) — A(V).

PROOF. Since the symbol map ClI(V) — A(V) is an isomorphism of
filtered super spaces, the associated graded map gr(Cl(V)) — gr(A(V)) =
A(V) is an isomorphism of graded super spaces. To check that the induced
map preserves products, we must show that the symbol map intertwines
products up to lower order terms. That is, for € C1(V)*) and y € C1(V)®
we have o(zy) — o(x)o(y) € AFF=1(V). But this is clear from

o(vi---v) = (e(vr) + o(B" (1)) -+~ (e(vr) + (B (vy)).1
=vA---Avp mod ATTH(V),
for v; € V. O
The quantization map has the following alternative description.

PROPOSITION 2.10. The quantization map is given by graded symmetriza-
tion. That is, for vi,...,vp €V,

1 .
gt A Ao = 23 sign(s)vaq) - vage)-

Here &y, is the group of permutations of 1,...,k and sign(s) = £1 is the
parity of a permutation s.

PRroOF. By linearity, it suffices to check for the case that the v; are
elements of an orthonormal basis ey, ..., e, of V, that is v; = e;; (the indices
i; need not be ordered or distinct). If the i; are all distinct, then the
e;; Clifford commute in the graded sense, and the right hand side equals
eiy -+ - €j, € CI(V; B), which coincides with the left hand side. If any two e;;
coincide, then both sides are zero. U

2.6. Transposition. An anti-automorphism of an algebra A is an in-
vertible linear map f: A — A with the property f(ab) = f(b)f(a) for all
a,b € A. Put differently, if A°P is A with the opposite algebra structure
a -op b := ba, an anti-automorphism is an algebra isomorphism A — A°P.

The tensor algebra carries a unique involutive anti-automorphism that
is equal to the identity on V. C T(V). It is called the canonical anti-
automorphism or transposition, and is given by

(U1®"'®Uk)T:Uk®"'®U1~
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Since transposition preserves the ideal Z(V') defining the exterior algebra
A(V), it descends to an anti-automorphism of the exterior algebra, ¢ + ¢! .
In fact, since transposition is given by a permutation of length (k — 1) +
- +2+1=k(k—1)/2, we have

(19) ¢" = (~)FEVRg g e AK(V).

Given a symmetric bilinear form B on V, the canonical anti-automorphism
of the tensor algebra also preserves the ideal Z(V'; B). Hence it descends to
an anti-automorphism of C1(V'; B), still called the canonical anti-automorphism
or transposition, with

(v -+~ v) "
The quantization map q: A (V) — CI(V; B) intertwines the transposition
maps for A(V) and Cl(V; B). This is sometimes useful for computations.

=V V1.

EXAMPLE 2.11. Suppose ¢ € AF(V), and consider the square of q(¢).
The element q(¢)? € C1(V) is even, and is hence contained in Cl(()%) (V). But

(@(@)*)" = (a(#)")?* = a(¢)” since q(¢)" = q(¢") = +q(¢). It follows that
9(¢)* € (A (V)@ A (V)@ - @ AT(V)),
where r is the largest number with 2r < k.

2.7. Chirality element. Let dimV = n. Then any generator 'y €
det(V) := A"(V) quantizes to give an element I' = ¢(I'5). This element (or
suitable normalizations of this element) is called the chirality element of the
Clifford algebra. The square I'? of the chirality element is always a scalar,
as is immediate by choosing an orthogonal basis e;, and letting I' = €1 - - - e,.
In fact, since I'T = (—=1)"(*=1/2I by (19), we have

n
12 = (1)~ D2 T B(ei, ).

i=1
In the case K = C and V = C" we can always normalize I" to satisfy
I'? = 1; this normalization determines I' up to sign. Another important case
where I' admits such a normalization is that of a vector space V' with split
bilinear form. Choose a pair of transverse Lagrangian subspaces to identify
V = F* @ F, and pick dual bases ej,...,en of F' and fY oo f™ of F*.
Then B(e;, f7) = %51]., and the vectors e; — f?, e; + f*, i = 1,...,m form an
orthogonal basis of V. Using (e; — f%)? = —1, (e; + )2 = 1 we see that
(20) U= (er = f)er + 1) (em = f™)(em + ™)
satisfies I'? = 1. Returning to the general case, we observe that I'v =
(—=1)"~%T for all v € V, e.g. by checking in an orthogonal basis. (If v = e;,

then v anti-commutes with all e; for j # i in the product I' = e; - - - €, and
commutes with e;. Hence we obtain n — 1 sign changes.)

oI if n is odd
I'v = ) )
—vI'  if nis even
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Thus, if n is odd then I" lies in the center of C1(V'; B), viewed as an ordinary
algebra. If n is even, the element T is even, and lies in the center of C1°(V; B).
Furthermore, in this case

(z) = Tal ™,

for all x € CI(V; B), i.e. the chirality element implements the parity auto-
morphism.

2.8. The trace and the super-trace. For any super algebra A4 and
(super) vector space Y, a Y -valued trace on A is an even linear map trs: A4 —
Y vanishing on the subspace [A, A] spanned by super-commutators: That
is, trs([z,y]) =0 for =,y € A.

PROPOSITION 2.12. Let n = dim V. The linear map
trs: C1I(V; B) — det(V)

given as the quotient map to Cly,)(V; B)/Cly,—1)(V; B) = A"(V) = det(V),
is det(V')-valued trace on the super algebra C1(V; B).

PROOF. Let e; be an orthogonal basis, and e; the associated basis of
Cl(V;B). Then trs(ey) = 0 unless I = {1,...,n}. The product e, ey is
of the form ere; = cex where K = (U J) — (INJ) and ¢ € K. Hence
trs(erey) = 0 = trg(eger) unless INJ =0 and TUJ = {1,...,n}. Butin
case I NJ =1, ey, ey super-commute: [er,e;] = 0. O

The Clifford algebra also carries an ordinary trace, vanishing on ordinary
commutators.

ProproSITION 2.13. The formula
tr: CL(V; B) = K, x> o(z)[q

defines an (ordinary) trace on Cl(V;B), that is tr(zy) = tr(yz) for all
z,y € C(V;B). The trace satisfies tr(z") = tr(z) and tr(1) = 1, and is
related to the super-trace by the formula,

trg(T'z) = tr(xz) Tp

where T' = q(T'A) is the chirality element in the Clifford algebra defined by a
choice of generator of det(V').

PRrROOF. Again, we use an orthogonal basis e; of V. The definition gives
tr(ep) = 1, while tr(ey) = 0 for I # 0. We will show tr(erey) = tr(eser). We
have ere; = cexg where K = (IUJ)—(INJ) and ¢ € K. If I # J the set K
is non-empty, hence tr(erey) = 0 = tr(eyer). If I = J the trace property is
trivial. To check the formula relating trace and super-trace we may assume
I'n =e1---e,. Forx =e; we see that trg(I'z) vanishes unless J = (), in
which case we obtain trg(I') = T'a. O
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2.9. Extension of the bilinear form. The symmetric bilinear form
on V extends to a symmetric bilinear form on the exterior algebra A(V'), by

setting B(¢,v) = 0 for |¢| # |¢| and
B(vy A+ ANvg, wp A--- ANwg) = det (B(vi,wj)i,j).

On the other hand, using the trace on CI(V; B) we also have an extension
to the Clifford algebra:

B(z,y) =tr(z"y), =,y€ ClV;B).

PrROPOSITION 2.14. The quantization map q intertwines the bilinear
forms on A(V) and C1(V; B).

PrOOF. We check in an orthogonal basis e; of V. Indeed, for I # J
B(er, ey) vanishes in A(V), but also in C1(V; B) since e] e; = +ese; has
trace zero. On the other hand, taking I = J = {i1,..., it} we get B(er,er) =
H§:1 B(es;, ei;) in both the Clifford and exterior algebras. O

2.10. Lie derivatives and contractions. For any vector space V,
there is an isomorphism of graded super vector spaces

Der(T(V)) 2Hom((V, T(V))=T(V)® V",

where V = T(V)! is regarded as a graded super vector space concentrated
in degree 1, and Der(T'(V)) are the derivations of T'(V) as a graded super
algebra. Indeed, any derivation of T'(V') is uniquely determined by its re-
striction to V; conversely any linear map D: V — T(V)*" of degree r € Z
extends to an element of Der(7T(V))" by the derivation property,

k
Doy®-@u)=» (1)@ @ Dy@- @,
i=1
for vq,...,vx € V. (For a detailed proof, see Chevalley [22, page 27].)
The graded super Lie algebra Der(7(V')) has non-vanishing components

in degrees » > —1. The component Der(7(V))~! is the space Hom(V,K) =
V*, acting by contractions t(a), o € V*:

k
Ua) (1 @ @up) =Y (=) Ha,v) 11 @0+ @ v,
i=1
The component Der(T(V))? = Hom(V, V) = gl(V) is the space of Lie deriva-
tives L € Der(T'(V)), Aegl(V):
k
La(v1 @ -+ ® vg) :ZU1®"'®LA(Ui)®"'®Uk-
i=1

We have Der(T(V))~! @ Der(T(V))? = V* x gl(V) as graded super Lie
algebras.
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REMARK 2.15. A parallel discussion describes the derivations of T'(V)
as an ordinary graded algebra; here one omits the sign (—l)r(i_l) in the
formula for the extension of D.

Both contractions and Lie derivatives preserve the ideal Z(V') defining
the exterior algebra, and hence descend to derivations of A(V'), still called
contractions and Lie derivatives. This defines a morphism of graded super
Lie algebras V* x gl(V') — Der(A(V)).

Given a symmetric bilinear form B on V, the contraction operators also
preserve the ideal Z(V'; B) since

a)(v] @ vy + vy @ — 2B(v1,v2)) =0, wvy,vp € V.
Hence they descend to odd derivations «(«) of C1(V; B) of filtration degree
—1, given as

k

(21) W) (01 v) = S (=1 e v)or - B

i=1
On the other hand, the Lie derivatives L4 on T'(V) preserve the ideal
Z(V;B) if and only if A € o(V;B), that is B(Avi,v2) + B(vi, Avy) = 0
for all v1,v2. Under this condition, L4 descends to an even derivation of
filtration degree 0

k
La(vr---vg) = Zvl"‘LA(Ui)"'Uk
i=1
on the Clifford algebra. Together with the contractions, this gives a mor-
phism of filtered super Lie algebras V* x o(V; B) — Der(Cl(V; B)):
[t(a1), t(a2)] =0, [Lay, La,] = L[A1,A2]’ [La, ()] = (A.),
where A.cc = —A*«a with A* the dual map.

PROPOSITION 2.16. The symbol map intertwines the action of V* x
o(V; B) by contractions and Lie derivatives on CL(V'; B) with the correspond-
ing action on A(V).

PROOF. It suffices to check on elements ¢ = vy A--- Avg € A(V) where

v1,. ..,V are pairwise orthogonal. Then ¢(¢) = vy - - - v, and the quantiza-
tion of «(a)¢ (given by (15)) coincides with ¢(«)(¢(¢)) (given by (21)). The
argument for the Lie derivatives is similar. O

Any element v € V' defines a derivation of Cl(V; B) by super commu-
tator: x +— [v,z]. For generators w € V, we have [v,w] = 2B(v,w) =
2(B°(v), w). This shows that this derivation agrees with the contraction by
2B’ (v):

(22) [0, ] = 2(B’(v))
As a simple application, we find:
39



2. CLIFFORD ALGEBRAS

LEMMA 2.17. The center of the filtered super algebra CI(V'; B) is the
exterior algebra over rad(B) = ker B’. Hence, if B is non-degenerate the
center consists of the scalars.

We stress that the Lemma refers to the ‘super-center’, not the center of
Cl(V; B) as an ordinary algebra.

PROOF. Indeed, suppose z lies in the center. Then 0 = [v, 2] = 2u(B"(v))z
for all v € V. Hence o(z) is annihilated by all contractions B®(v)), and is

therefore an element of the exterior algebra over ann(ran(B’)) = ker(B").
Consequently x = g(o(z)) is in Cl(ker(B’)) = A(ker(B’)). O

2.11. The Lie algebra q(A?(V)). The following important fact relates
the ‘quadratic elements’ of the Clifford algebra to the Lie algebra o(V; B).

THEOREM 2.18. The elements q(\), A\ € A*(V) span a Lie subalgebra of
CI(V; B). Let {-,-} be the induced Lie bracket on A2(V') so that

[g(A), a(N)] = q({\, ).

The transformation v — Ax(v) = [q(N),v] defines an element Ay € o(V; B),
and the map

A(V) = o(V;B), A Ay

is a Lie algebra homomorphism. One has La, = [q(\),-] as derivations of
Cl(V; B).

PROOF. By definition, Ay(v) = [g(\),v] = —2u(B"(v))q(\). Hence
Ax(v) = =2u(B°(v))A

since the quantization map intertwines the contractions of the exterior and

Clifford algebras. We have Ay € o(V; B) since
B(Ax(v),w) = —2u(B’(w))Ax(v) = =2u(B(w))e(B’ (v))A

is anti-symmetric in v, w. It follows that L4, = [¢()), ] since the two sides

are derivations which agree on generators. Define a bracket {-,-} on A%(V)
by

(23) MNP =La N
(using the Lie derivatives on A(V)). The calculation
[a(N), a(N)] = La,q(X) = q(La,X) = ({1, N'})

shows that ¢ intertwines {-,-} with the Clifford commutator; in particular
{-,-} is a Lie bracket. Furthermore, from

[a(X), [g(N), 0] = [a(X), [a(N), o]l = [[g(A), (X)), o] = [g({ X, X'}), o]

we see that [Ay, Ay] = Agy ny, that is, the map A — A, is a Lie algebra
homomorphism. O
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COROLLARY 2.19. Relative to the bracket {-,-} on A*(V), the map
VxAAV) = VExo(V;B), (v,\)— (B’ (v),Ay)

is a homomorphism of graded super Lie algebras. We have a commutative
diagram,
VxA(V) —— V*xo(V;B)

| |
Cl(V; B) — Der(Cl(V; B))
Note that we can think of V' x A%2(V) as a graded super subspace of
A(V)[2], using the standard grading on A(V) shifted down by 2. We will see

in the following Section 3 that the graded Lie bracket on V x A%(V) extends
to a graded Lie bracket on all of A(V)[2].

PROPOSITION 2.20. If B is non-degenerate, then the map A — Ay is an
isomorphism A2(V) — o(V; B).

PROOF. In abasis e; of V, with B-dual basis e’ the inverse map o(V; B) —
A2(V) is given by A — 23, A(e;) A €'. Indeed, since B(A(e;),e') = 0 the
quantization of such an element is just 1 >, A(e;)e’ € CI(V; B), and one
directly checks that

13 Alen)e' o] = Aww)
as required. Z O
The inverse map will be denoted
(24) A o(V;B) = A2(V),
and its quantization
(25) vy=gqoX:o(V;B)— Cl(V),

In a basis e; if V, with B-dual basis e’ we have
1 i
(26) AA) = 1 Y Ale) A€

hence y(A) = 157, A(e;)e.

2.12. A formula for the Clifford product. It is sometimes useful
to express the Clifford multiplication
mqr: Cl(VaV)=Cl(V)® Cl(V) = CI(V)
in terms of the exterior algebra multiplication,
ma: A(VaV)=AV)AV)—= AV).
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We assume that n =dimV < oco. Let ¢; € V, i =1,...,n be an orthogonal
basis, ! € V* the dual basis, and e; € A(V), e! € A(V*) the corresponding
dual bases indexed by subsets I C {1,...,n}. Then the element

U=> e @B (e) €AV)RAV)
I

is independent of the choice of bases.

ProposITION 2.21. Under the quantization map, the exterior algebra
product and the Clifford product are related as follows:

me1o(q®q) =qompou(V)

Proor. Let V; be the 1-dimensional subspace spanned by e;. Then
A(V) is the graded tensor product over all A(V;), and similarly C1(V) is the
graded tensor product over all Cl(V;). The formula for ¥ factorizes as

(27) U= H —e'®@ B ().

It hence suffices to prove the formula for the case V = V4. The contraction
operator L(1—61®Bb(61)) takes the basis elements 1®1, 1®e;, e1®1,e1®e1
to1®1, 1®e, e1®1,e1 ®ey + B(ey, e1) respectively. Hence gompou(1—
el ®Bb(el)) takes these basis elements to 1, e, e, B(ey, e1). But this is the
same as the image of the basis elements under Clifford multiplication. I

If char(K) = 0, we may also write the element ¥ as an exponential:

—exp Ze ®Bb eZ

This follows by rewriting (27) as [[;exp ( — ¢’ ® B(e;)), and then writing
the product of exponentials as an exponential of a sum.

3. The Clifford algebra as a quantization of the exterior algebra

Using the quantization map, the Clifford algebra C1(V'; B) may be thought
of as A(V') with a new associative product. In this Section make more pre-
cise in which sense the Clifford algebra is a quantization of the exterior
algebra. Much of the material in this section is motivated by the paper [48]
of Kostant and Sternberg.

3.1. Differential operators. The prototype of the notion of quanti-
zation to be considered here is the algebra of differential operators on a
manifold M. For all k > 0, we let D% (M) c End(C>(M)) denote the
space of differential operators of degree < k. Thus () (M) is the algebra
of real-valued functions C*°(M) (acting by multiplication), and inductively
for k > 0,

DF(M) = {D € End(C™(M))| Vf € C®°(M): [D, f] € %~V (M)}.
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One may show that this is indeed the familiar notion of differential operators:
in local coordinates qi,...,q, on M, any D € D®*) (M) has the form

using multi-index notation I = (iy,...,i,) with
n n
d Jd
I| = ;s —\ = i
n=%u o' =1l
J=1 J=1

The composition of operators on C°*°(M) defines a product

D®E (M) x DD (M) — DEHD (M),

making
(M) = 2" (1)
k=0

into a filtered algebra. Now let T*M be the cotangen bundle of M (dual
of the tangent bundle), and let Pol®*(T*M) C C°°(T*M) be the functions
whose restriction to each fiber is a polynomial of degree k. Note that
Pol*(T*M) is isomorphic to the sections of S¥(T'M), the k-th symmetric
power of the tangent bundle.

PROPOSITION 3.1. For every degree k differential operator D € ©¥) (M),
there is a unique function o*(D) € Pol®(T*M) such that for all functions
/s

o"(D)odf =[[--[D. f]. f]--- . f]

-
k  times

SKETCH OF PROOF. Writing D in local coordinates as above, the right
hand side is the function

(28) Z al(w)({ii)il (882;);)%
\|=k

In particular, its value at any z € M depends only the differential d, f, and
is a polynomial of degree k in d, f. O

The function
o*(D) € Pol*(T*M) =2 T°°(M, S*(TM))

is called the degree k principal symbol of P. By (28), it is given in local
coordinates as follows:

(D) (w,p) = 3 ar(@)p’.

\T|=k
We see in particular that o*(D) = 0 if and only if D € D*=1(M1).
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We obtain an exact sequence,

0 = ®E=D(a1) = DO (A1) L5 T0(M; SHTM)) — 0.
If D1, Dy are differential operators of degrees ki, ko, then Dy o Do is a dif-
ferential operator of degree k1 + ko and
of1R2 (D) o Dy) = o*1(Dy)o™?(Dy).
The symbol map descends to a morphism of graded algebras,
o gr*O(M) — IT'°°(M,S*(TM)).

Using a partition of unity, it is not hard to see that this map is an isomor-
phism.

If D1, Do have degree k1, ko, then the degree ki + ko principal symbol of
the commutator [Dy, D3] = Dy o Dy — Dy o Dy is zero. Hence [D1, D9] has
degree k1 + ko — 1. A calculation of the leading terms shows

Uk1+k2—1([D17D2]) = {Ulﬂ(Dl)’ GkQ(DQ)}

where {-,-} is the Poisson bracket on Pol®*(T*M) = T'>°(M,S*TM) given in
local coordinates by

B " /0f 8¢  Og Of
{fjg}_;<api8%_8pia(]i>.

(We recall that a Poisson bracket on a manifold @ is a Lie bracket {-,-} on
the algebra of functions C'*°(Q) such that for all ' € C*°(M), the linear
map {F,-} is a derivation of the algebra structure. One calls {F,-} the
Hamiltonian vector field associated to F.) In this sense, the algebra ©°(M)
of differential operators is regarded as a ‘quantization’ of the Poisson algebra
Pol*(T*M) =T>°(M,S*TM).

3.2. Graded Poisson algebras. To formalize this construction, we
define a graded Poisson algebra of degree n to be a commutative graded
algebra P = @5 Pk, together with a bilinear map {-,-}: P x P — P
(called Poisson bracket) such that

(1) The space P[n] is a graded Lie algebra, with bracket {-,-}.
(2) The map f +— {f,-} defines a morphism of graded Lie algebras
P[n] — Derag(P).
That is, for any f € P, the map {f,-} is a degree k — n derivation of the
algebra structure. Note that the Poisson bracket is uniquely determined by
its values on generators.

EXAMPLE 3.2. For any manifold M, the space I'*°(M, S*(T'M)) of fiber-
wise polynomial functions on T*M is a graded Poisson algebra of degree 1.

EXAMPLE 3.3. Suppose (g,[,]g) is any Lie algebra. Then the Lie
bracket on g extends to a Poisson bracket on the graded algebra S(g), mak-
ing the latter into a graded Poisson algebra of degree 1. Viewing S(g) as
polynomial functions on g*, this is the Kirillov Poisson structure on g*.
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Conversely, if V' is any vector space, then the structure of a graded Poisson
algebra of degree 1 on S(V) is equivalent to a Lie algebra structure on V.

Suppose now that A is a filtered algebra, with the property that the asso-
ciated graded algebra gr(A) is commutative. This means that [A®), AW)] c
AR+ for all k,I. Then the associated graded algebra P = gr(A) be-
comes a graded Poisson algebra of degree 1, with bracket determined by a
commutative diagram:

AF) o A —_y p(k+=1)

)

! |

Pk ® fpl 'Pk—l-l—l
We will think of A as a ‘quantization’ of P = gr(A), on the feeble grounds
that Poisson brackets correspond to commutators. For instance, as discussed
later the enveloping algebra U(g) defines a quantization of the Poisson al-

gebra S(g).

3.3. Graded super Poisson algebras. The symbol map for Clifford
algebras may be put into a similar framework, but in a super-context. See
[48] and [20]. See Appendix A for background on graded and filtered and
super spaces.

DEFINITION 3.4. A graded super Poisson algebra of degree n is a com-
mutative graded super algebra P = @, ., Pk, together with a bilinear map
{,-}: P x P — P such that

(1) The space P|[n] is a graded super Lie algebra, with bracket {-,-}.
(2) The map f +— {f,-} defines a morphism of graded super Lie alge-
bras, P[n] — Deray(P).

Here Der,s(P) signifies the derivations of P as a graded super algebra.
Thus, the bracket {-,-} is a map of degree —n, with the properties

{1, {f2, £33} = {{f1, fa}s S} + (=) WmmURIE L (5 £
{fi,f2} = _(_1)(\f1\fn)(\fz\*n){f%f1}7
{f1, fofa} = {f1, fo} fa + (=1)IAInIRI g 08 f)

For f € P*, the bracket {f,-} is a derivation of degree k—n of the algebra and
Lie algebra structures. Letting Derpy;(P) the derivations of P as a graded
Poisson algebra, we hence have a morphism of graded super Lie algebras,

(29) P[n] — DerPoi(p)7 [ {fa }

Note that P™ = P[n]° is an ordinary Lie algebra under the Poisson bracket.
Suppose now that A is a filtered super algebra such that the associated
graded super algebra gr(A) is commutative. Thus [A®), AD] ¢ AK+H-1),
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Using the compatibility condition for the Zo-grading and filtration (cf. Ap-
pendix A)

(30) (A(2k))(_) _ (A(Qk—l-l))(_)’ (A(2k+1))i _ (A(2k+2))i,

we see that in fact
(AR AD] ¢ AB+=2),

Hence the associated graded super algebra P = gr(A) becomes a graded
super Poisson algebra of degree 2, with Poisson bracket determined by the
commutative diagram

AR @ 4Dy gh+i-2)

)

3.4. Poisson structures on A(V). Any symmetric bilinear form B
on a vector space V induces on A = A(V) the structure of a graded super
Poisson algebra of degree 2. The Poisson bracket is given on generators
v,w eV = AY(V) by

{v,w} =2B(v,w).

In this way, one obtains a one-to-one correspondence between Poisson brack-
ets (of degree -2) on A(V) and symmetric bilinear forms B. Clearly, this
Poisson bracket is induced from the commutator on the Clifford algebra
under the identification A(V') = gr(Cl(V; B)) from Proposition 2.9.

Poisson bracket with elements of degree k defines derivations of degree
k —2 of A(V). In particular, Poisson bracket with an element v € V is a
derivations of degree —1, i.e. contractions:

{Ua } = 2[’(Bb(v))7
as one checks on generators w € V. Similarly for A € A%2(V) we have
{)\) } - LA)\)

since both sides are derivations given by A)(w) on generators w € V. In
particular, the Lie bracket on A?(V) = (A(V)[2])? defined by the Poisson
bracket recovers our earlier definition as {\,\'} = L4, N.

The graded Lie algebra V x A%(V) from Section 2.11 is now interpreted
as

(A(V) @ A*(V))[2] € A(V)[2].

As we had seen, the quantization map ¢: A (V) — Cl(V) restricts to a
Lie algebra homomorphism on this Lie subalgebra. That is, on elements of
degree < 2 the quantization map takes Poisson brackets to commutators.
This is no longer true, in general, for higher order elements.
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EXAMPLE 3.5. Let ¢ € A3(V), so that {¢, ¢} € A*(V). As we saw in
Example 2.11,
[a(¢), a()] = 2a(¢)* € a(A° (V) & AL (V).
The leading term is given by the Poisson bracket, that is,

[a(¢),a(¢)] — a({¢,¢}) € A°(V) =K.

In general, this scalar is non-zero. For instance, if V = R3 with the standard
bilinear form, and ¢ = e; A ez A eg (the volume element) then

[4(9). a(¢)] = 24(¢)* = 2(ereze3) = —2.

More generally, suppose V is a finite-dimensional vector space, with non-
degenerate symmetric bilinear form B, and let e, be a basis of V, with
B-dual basis e®. Given ¢ € A3(V), define its components in the two bases
by

o= éZqﬁ“bcea ANep N e. = éZqﬁabce“ Aeb A el
abc abc
According to Proposition 2.21, the constant term in [q(¢), q(#)] = 2q($)?
is obtained by applying the operator %(— o, t(e?) ® tleq))? to 29 ® ¢ €
A(V) @ A(V). This gives

(6),0(0)] ~ a({66) = 3 (~ S eV ® uew)) (6@ 9)

a

_é Z ¢abc¢abc-

abc

It can be shown (cf. §6, Proposition 7.1 below) that {¢,$} = 0 if and only
if the formula [v, w] := {{¢, v}, w} defines a Lie bracket on V.

Consider again the map A(V)[n] — Derpoi(A(V)), f— {f, -} from (29).
Its composition with the inclusion Derpoi(A(V')) = Derag(A(V)) 2 A(V) @
V* is given by
|f|2 Z f ® Bb ea)

where e, is a basis of V' with dual ba51s e? € V*. To verify this identity, it
suffices to evaluate on generators v € V: Indeed,

{fivy = )V o, £} = (C)VI2u(B(0)) f = (~=)V12 )" Blea, v) ule
If B is non-degenerate, then all derivations of the Poisson structure on A(V)
are inner.

PROPOSITION 3.6. Suppose B is a non-degenerate symmetric bilinear
form on V. Then the map

A(V)[n] = Derpui(A(V))
is surjective, with kernel the scalars K[n].
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PROOF. Suppose D € Derpoi(A(V))™ is a derivation of degree m > —1
of the Poisson structure. Let eq,..., e, be a basis of V, with ¢* the B-dual
basis. Then De; € A™FH(V), and

{Dei, ej} + {Dej, Si} = {Dei, €j} + (*1)m{6i, Dej} = D{ei, 6]‘} =0.

As a consequence,
{Z Dej Nel e} = ZDej A€l e} — Z{Dej, e} Ae
J J J
= 2De; + Z{Dei, e} Ael

J
= 2(m+ 2)De;

where we used ) {er, ej} Ae? = 2|I|e;. Tt follows that D is Poisson bracket

with the element )
_ De; Aél.
2(m + 2) ZJ: e
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The spin representation

The Clifford algebra for a vector space V with split bilinear form B has
an (essentially) unique irreducible module, called the spinor module S. The
Clifford action restricts to a representation of the Spin group Spin(V'), known
as the spin representation. After developing the basic properties of spinor
modules and the spin representation, we give a discussion of pure spinors
and their relation with Lagrangian subspaces. Throughout, we will assume
that V is a finite-dimensional vector space over a field K of characteristic
zero, and that the bilinear form B on V is non-degenerate. We will write
Cl(V) in place of C1(V; B).

1. The Clifford group and the spin group

1.1. The Clifford group. Recall that II: CI(V) — CI(V), z — (—1)I*lz
denotes the parity automorphism of the Clifford algebra. Let C1(V)* be the
group of invertible elements in C1(V).

DEFINITION 1.1. The Clifford group T'(V') is the subgroup of CI(V)*,
consisting of all x € CI(V')* such that

Ap(v) :=(x)vz"t € V
for allv e V. C CI(V).

Hence, by definition the Clifford group comes with a natural represen-
tation, T'(V) — GL(V), x + A,. Let ST(V) = T'(V) N CI°(V)* denote the
special Clifford group.

THEOREM 1.2. The natural representation of the Clifford group takes
values in O(V'), and defines an exact sequence,

1 —-K*—T(V)—O(V) —1.
It restricts to a similar exact sequence for the special Clifford group,
1— KX — ST(V) — SO(V) — 1.
The elements of T'(V') are all products

(31) T =g

where v, ...,v € V are non-isotropic. The corresponding element A, is a
product of reflections:

(32) Ay =Ry, - Ry,

49



1. THE CLIFFORD GROUP AND THE SPIN GROUP

In particular, every element x € T'(V) has a definite parity (given by the
parity of k in (31)), and ST(V') consists of products (31) with k even.

PRrROOF. Let z € CI(V). The transformation A, is trivial if and only if
II(x)v = vz forallv € V, i.e. if and only if [v, 2] = 0 for all v € V. That is, it
is the intersection of the center K C CI(V) with I'(V'). (See §2 Lemma 2.17.)
This shows that the kernel of the homomorphism I'(V)) — GL(V), =z — A,
is the group K* of invertible scalars.

Applying —II to the definition of A, we obtain A, (v) = xvll(z)~! =
Aqi(z)(v). This shows Ap,) = Az for x € I'(V). Thus I(z) is a scalar
multiple of x, in fact II(x) = £z since II is the parity operator. This shows
that elements of I'(V') have definite parity. For z € I'(V) and v,w € V we
have, using again Ay, = Ay,

QB(Ax(v),Az(w)) = Az (0) A (w) + Ay (w) Az (v)
) Ani(e) (w) + Az (w) Arya) (v)
-1

)

(
(

This proves that A, € O(V) for all z € T'(V). Suppose now that v € V
is non-isotropic. Then it is invertible in the Clifford algebra, with v=! =
v/B(v,v) and II(v) = —v. For all w € V,

B(v,w)
B(v,v)
Hence v € I'(V), with A, = R, the reflection defined by v. More generally,
this proves (32) whenever z is of the form (31). By the E. Cartan-Dieudonné
Theorem 4.5, any A € O(V) is a product of reflections R,,. This shows the
map x — A, is onto O(V'), and that I'(V') is generated by the non-isotropic
vectors in V. The remaining statements are clear. O

Ay(w) = —vwv™! = (wv — 2B(v,w))v ™ =w — 2

v = Ry(w).

Since every x € I'(V') can be written in the form (31), it follows that the
element 2"z lies in K*. This defines the norm homomorphism

(33) N: (V) > KX, 2z 2z

It is a group homomorphism, and has the property
N(Az) = A2N(z)

for A € K*.

ExAMPLE 1.3. The chirality element I' € Cl(V') defined by a choice of
generator I'y € det(V) is an element of the Clifford group I'(V), and is
contained on ST(V) if and only if dim V' = 2m is even. In the special case
of a vector space with split bilinear form, and I normalized so that I'> = 1
(see Equation (20)), one has

N)=I"T=(-1)™.
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EXAMPLE 1.4. Consider V = F* @ F with dimF = 1. Choose dual

generators e € F, f € F* so that Ble, f) = % One checks that an even

element = s +tfe € CI%V) with s,t € K lies in ST(V) if and only if
s, s +t are both invertible, and in that case

Az(e) = e Au(f) = st
We have N(z) = 2" 2 = s(s + t).

1.2. The groups Pin(V') and Spin(V'). We make the following defini-
tions.

DEFINITION 1.5. The Pin group Pin(V) is the kernel of the norm ho-
momorphism N: I'(V') — K*. Its intersection with ST'(V') is called the Spin
group, and is denoted Spin(V).

The normalization N(z) = 1 specifies x € I'(V') up to sign. Hence one
obtains exact sequences,
1 — Zs — Pin(V) — O(V),
1 — Zy — Spin(V) — SO(V).

In general, the maps to SO(V), O(V) need not be surjective. A sufficient
condition for surjectivity is that every element in K admits a square root,
since one may then rescale any = € I'(V') so that N(z) = 1. Theorem 1.2
shows that in this case, Pin(V') is the set of products v; - - - vy of elements
v; € V with B(v;,v;) = 1, while Spin(V') consists of similar products with &
even.

REMARK 1.6. If V' has non-zero isotropic vectors, then the condition that
all elements in K have square roots is also necessary. Indeed, let e # 0 be
isotropic, and let f be an isotropic vector with Ble, f) = % Let A € SO(V)

be equal to the identity on span{e, f}*, and
Ale)=re, A(fy=r""Ff

with » € K*. As shown in Example 1.4, the lifts of A to ST'(V') are elements
of the form x = s + tfe with r = s(s +¢)71. Since N(x) = s(s +t) = % we
see that 2 € Spin(V) if and only if » = s2. The choice of square root of r
specifies the lift x.

REMARK 1.7. If K = R, the Pin and Spin groups are sometimes defined

using a weaker condition N(z) = £1. This then guarantees that the maps
to O(V),SO(V) are surjective.

For K=R, V =R™™ we use the notation
Pin(n,m) = Pin(R™™), Spin(n,m) = Spin(R™™).

If m = 0 we simply write Pin(n) = Pin(n,0) and Spin(n) = Spin(n, 0).
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THEOREM 1.8. Let K = R. Then Spin(n,m) is a double cover of the
identity component SOg(n,m). If n > 2 or m > 2, the group Spin(n, m) is
connected.

PRrROOF. The cases of (n,m) = (0,1), (1,0) are trivial. If (n,m) = (1,1)
one has SOy(1,1) = Ry, and Spin(1,1) = Z2 x Ry (see Example 1.4).
Suppose n > 2 or m > 2. To show that Spin(n,m) is connected, it suffices
to show that the elements £1 (the pre-image of the group unit in SO(n,m))
are in the same connected component. Let

v(f) ERM, 0<O<n

be a continuous family of non-isotropic vectors with the property v(m) =
—v(0). Such a family exists, since V' contains a 2-dimensional subspace
isomorphic to R*? or R%2. Rescale the vectors v(6) to satisfy B(v(f),v(0)) =
+1. Then [0,7] — Spin(n,m), 0 — x(0) = v(#)v(0) is a path connecting
+1 and —1. (]

The groups Spin(n, m) are usually not simply connected. Indeed since
since SOg(n, m) has maximal compact subgroup SO(n) x SO(m), the fun-
damental group is

71(SOg(n,m)) = 71 (SO(n)) x 71 (SO(m))

In particular, if n,m > 2 the fundamental group of SO(n,m) is Zgs X Zg, and
hence that of its double cover Spin(n,m) is Zy. The spin group is simply
connected only in the cases (n,m) with n > 2 and m = 0,1, or n =0, 1 and
m > 2, and only in those cases Spin(n, m) the universal cover of SOg(n, m).
Of particular interest is the case m = 0, where Spin(n) defines the universal
cover of SO(n) for n > 2. In low dimensions, one has the exceptional
isomorphisms

Spin(2) = SO(2),
Spin(3) = SU(2),
Spin(4) = SU(2) x SU(2),
Spin(5) = Sp(2),

Spin(6) = SU(4).

Here Sp(n) is the compact symplectic group, i.e. the group of norm-preserving
automorphisms of the n-dimensional quaternionic vector space H". The iso-
morphisms for Spin(3), Spin(4) follow from §1 Proposition 6.3, while the
isomorphisms for Spin(5), Spin(6) are obtained from a discussion of the
spin representation of these groups, see Section 7.6 below. For n > 7, there
are no further accidental isomorphisms of this type.

Let us now turn to the case K = C, so that V' = C" with the standard
bilinear form. We write Pin(n, C) = Pin(C™) and Spin(n,C) = Spin(C™).

PRrOPOSITION 1.9. Pin(n, C) and Spin(n, C) are double covers of O(n, C)
and SO(n,C). Furthermore, Spin(n,C) is connected and simply connected,
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i.e. it is the universal cover of SO(n,C). The group Spin(n) is the mazimal
compact subgroup of Spin(n,C).

PROOF. The first part is clear, since for z € I'(C™) the condition N (Az) =
1 determines A up to a sign. The second part follows by the same argument
as in the real case, or alternatively by observing that 41 are in the same
component of Spin(n,R) C Spin(n,C). Finally, since SO(n) is the maxi-
mal compact subgroup of SO(n,C), its pre-image Spin(n) is the maximal
compact subgroup of Spin(n, C). O

Suppose V is a vector over K = R or C, with non-degenerate symmetric
bilinear form B. Since Spin(V') is a double cover of the identity component of
SO(V), its Lie algebra is o(V'). The following result realizes the exponential
map for Spin(V) directly in terms of the Clifford algebra. View C1°(V)
as a Lie algebra under Clifford commutator, with corresponding Lie group
C1°(V)*. The exponential map exp: ClI°(V) — CI1°(V)* for this Lie group
is given as a power series. Recall the Lie algebra homomorphism v: o(V) —
CI°(V) from §2.11, see (25).

ProproSITION 1.10. The following diagram commutes:
Spin(V) —— CI%(V)*

T exp T exp

o(V) — C1Io(v)

PRrROOF. For A € o(V) we have A(v) = [y(A),v] for v € V, and accord-

ingly

exp(A)(v) = exp(ad(y(A))v
Using the identity exp(a)bexp(—a) = exp(ad(a))b for elements a,b in a
finite-dimensional (ordinary) algebra, we obtain

exp(A)(v) = e?Wpe(A),
Since the left hand side lies in V, this shows ¢¥(4) € ST(V) by definition of
the Clifford group. Furthermore, since v(A)" = —vy(A) we have

(T NT = DT = (4

and therefore N (e"(4)) = 1. That is,

e’ ¢ Spin(V)
This shows that the group Spin(V)) C CI(V)* has Lie algebra v(o(V)) C
CIo(v). O

EXAMPLE 1.11. Let K = R or C, and V = K? with the standard bilinear
form. Consider the element A € o(V) defined by A(A) = e; A ea. Then
v(A) = ejey. Since (e1e2)? = —1, the 1-parameter group of elements

x(6) = exp(0/2e1e2) € Spin(V)
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is given by the formula,
x(6) = cos(6/2) + sin(0/2)e;ea.
To find its action A, on V, we compute
z(0)e1z(—0) = (cos(0/2) + sin(0/2)erez)eq (cos(0/2) — sin(0/2)ere2)
= (cos(0/2)e; — sin(0/2)eq)(cos(0/2) — sin(f/2)eres)
= (cos?(0/2) — sin®(0/2))e; — 2sin(0/2) cos(h/2)es
= cos(f)e; — sin(f)es

This verifies that A, is given as rotations by 6. We see explicitly that
Ap(o42r) = Ag(g) while (0 + 2m) = —x(6).

2. Clifford modules

2.1. Basic constructions. Let V be a vector space with symmetric
bilinear form B, and CI(V') the corresponding Clifford algebra. A module
over the super algebra CI(V) is called a Clifford module, or simply C1(V)-
module. That is, a Clifford module is a finite-dimensional super vector space
FE together with a morphism of super algebras,

og: CI(V) — End(E).

Equivalently, a Clifford module is given by a linear map gog: V — End! (E)
such that

oe(v)ee(w) + ¢op(w)op(v) = 2 B(v, w)l
for all v,w € V. A morphism of Clifford modules F, E’ is a morphism of
super vector spaces f: E — E’ intertwining the Clifford actions.

REMARK 2.1. If E carries a filtration, compatible with the Zs-grading
in the sense of Appendix A and such that the Clifford action is filtration
preserving, then we call E a filtered Clifford module. To construct a com-
patible filtration on a given Clifford module, choose any subspace E' C E of
definite parity, and pick [ € Z, even or odd depending on the parity of E’.
Then put E¢CH™) = CLI(V)™E! for m € Z.

REMARK 2.2. One can also consider modules over Cl(V'), viewed as an
ordinary (rather than super) algebra. These will be referred to as ungraded
Clifford modules.

There are several standard constructions with Clifford modules:

(1) Submodules, quotient modules. A submodule of a Cl(V)-
module E is a super subspace F; which is stable under the module
action. In this case, the quotient E/E; becomes a Cl(V')- module
in an obvious way. A Cl(V)-module E is called irreducible if there
are no submodules other than F and {0}.

(2) Direct sum. The direct sum of two C1(V')-modules E, E5 is again
a Cl(V)-module, with op,ap, = 08, ® 0E,-
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(3) Dual modules. If E is any Clifford module, the dual space
E* = Hom(E,K) becomes a Clifford module, with module struc-
ture defined in terms of the canonical anti-automorphism of C1(V')
by

op-(x) = op(z")*, z € CI(V).

That is, (op+(x)Y, B) = (¥, 0p(x")B) for ¢p € E* and B € E. If
E is a filtered Cl(V)-module, then E* with the dual filtration (see
Appendix A) is again a filtered C1(V')-module.

(4) Tensor products. Suppose Vi, Vs are vector spaces with sym-
metric bilinear forms By, By. If Ej is a Cl(Vi)-module and FEj
is a Cl(V3)-module, the tensor product E; ® Fy is a module over
Cl(V1) ® Cl(Vy) = CI(V; @ Vo), with

OF®FE> (361 ® x2) = 0F; (561) X OF, (362)

In particular, C1(V')-modules E can be tensored with super vector
spaces, viewed as modules over the Clifford algebra for the trivial
vector space {0}.

(5) Opposite grading. If E is any Cl(V)-module, then the same
space E with the opposite Zs-grading is again a Cl(V)-module,
denoted E°P.

Given a Cl(V)-module E, one obtains a group representation of the
Clifford group I'(V') by restriction, and ST'(V') acquires two representations
E° E.

The first example of a Clifford module is the Clifford algebra Cl(V) itself,
with module structure given by multiplication from the left. The exterior
algebra A(V) is a Clifford module, with action given on generators by (17).
The symbol map o: CI(V) = A(V) from §2 Section 2.5 is characterized as
the unique isomorphism of Clifford modules taking 1 € CI(V') to 1 € A(V).
The Clifford module CI(V') = A(V) is self-dual:

PROPOSITION 2.3. The Cl(V)-module E = CI(V') (with action by left
multiplication) is canonically isomorphic to its dual.

ProoOF. The map
CI(V) = CHV)*, y > ¢y,

where (¢, 2) = tr(y'z), is a linear isomorphism of super spaces. For x €
Cl(V') we have,

(Gay, 2) = tr(yTxTz) = (¢, xTZ> = (T.¢y, 2)
hence ¢ is Cl(V')-equivariant. O

Note however that the isomorphism described above does mot preserve
filtrations.
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2.2. The spinor module Sg. Let V be a vector space of dimension
n = 2m, equipped with a split bilinear form B. View Cl(V) as a Clifford
module under multiplication from the left, and let F' C V be a Lagrangian
subspace. Then the left-ideal C1(V)F is a submodule of C1(V'). The spinor
module associated to F is the quotient C1(V')-module,

Sy = CI(V)/CI(V)F.

The spinor module Sgp may also be viewed as an induced module. View
A(F) = CI(F) as a subalgebra of CI(V'), by the natural homomorphism
extending the inclusion F' C V.

PROPOSITION 2.4. Let K be the trivial A(F)-module, that is
ot =gt, ¢ENF), tekK
Then Sg is the corresponding induced module:
Sr=ClI(V) @xr) K.

PRrROOF. By definition of the tensor product over A(F'), the right hand
side is the quotient of C1(V) ® K by the subspace generated by all z ® ¢.t —
x¢ ® t. But this is the same as the subspace of ClI(V') by the subspace
generated by all z(¢ — ¢jg)) for ¢ € A(F), which is exactly CI(V)F. O

PROPOSITION 2.5. The choice of a Lagrangian complement F' = F* to
F identifies

Sp = A(F")
with Clifford action given on generators by o(u,v) = e(u) + ¢(v) for v €
F, pneF*.

PROOF. The choice of F’ identifies V = F* @ F, with the bilinear form
B((p1,v1), (p2,v2)) = 3({p1,v2) + {2, v1)). Both A(F) and A(F*) are em-
bedded as subalgebras of Cl(V'), and the multiplication map defines a ho-
momorphism of filtered super vector spaces

(34) ANE*) @ A(F) — CL(F* @ F).

The associated graded map is the isomorphism A(F*) @ A(F) — A(F* @
F) given by wedge product. Hence (34) is a linear isomorphism. Under
this identification, CI(V)F' = A(F*) ® By, AF(F), which has a natural
complement A(F*). Consequently

Srp=CIV)/CUV)F = A(F™).

The Clifford action of (u,v) € F* @& F on any ¢ € A(F™) is given by Clifford
multiplication by u + v from the left, followed by projection to A(F*) along
CI(V)F'. Since

(4 o) = pp + [0,9] + (=)o = (A + 1(w)) + (—1)Plpw,
and v € CI(V)F, this confirms our description of the action on A(F*). O
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The spinor module Sg carries a canonical filtration, compatible with the
Zo-grading, given as the quotient of the filtration of the Clifford algebra:

s — civ)® yc1(v)E-DF,

PROPOSITION 2.6. (1) The associated graded space for the filtration
on the spinor module is

gr(Sr) = A(F7).

(2) Forv €V, the operator o(v) on Sg has filtration degree —1, and the
associated graded operator gri(o(v)) on gr(Sr) = A(F*) is wedge
product with the image of v in F* = V/F.

(3) Forv e F CV, the operator p(v) has filtration degree —1, and the
associated graded operator is contraction: gr—'(o(v)) = t(v) That

is, if ¢ € ng) the leading term of o(v)¢ € ngl), 18

g (0(v)9) = t(v) gr*(9).
PRrROOF. Since gr(Cl(V')) = A(V), the associated graded space is
gr(Sp) =AV)/ AN(V)F = AV/F) = A(F™).

Choose a Lagrangian complement F’ to identify Sp = A(F*). Then S%k) =

®i§k A'F*, and the remaining claims are immediate from Proposition 2.5.
O

2.3. The dual spinor module S*. We define a dual spinor module
associated to F'

ST = CI(V) det(F)
where det(F) = A™(F) is the determinant line.
PROPOSITION 2.7. The choice of a Lagrangian complement F' = F* to
F identifies
SI' = A(F)
with Clifford action given on generators by o(u,v) = t(p) + €(v).

Proor. Following the notation from the proof of Proposition 2.5, we
have

S = CI(V) det(F) = A(F*) ® det(F) = A(F),

where the isomorphism is given by the contraction homomorphism A(F*) —
End(A(F)). One readily checks that this identification takes the Clifford
action to ¢(u) + €(v). O

Propositions 2.5 and 2.7 suggest that the spinor modules S, S are
in duality. In fact, this duality does does not depend on the choice of
complement.
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PROPOSITION 2.8. There is a non-degenerate pairing
SExSp =K, (y,[z]) — tr(y'z)
fory € S¥ ¢ C(V) and [z] € CI(V)/CUV)F (represented by an element
x € Cl(V)). The pairing satisfies

(v, o(2)[a]) = (e(z")y. [a]),
hence it defines an isomorphism of Clifford modules S¥ = S%. Choosing
a Lagrangian complement F' to identify Sp = A(F*) and S¥' = A(F), the
pairing is just the usual pairing between A(F*) and N(F).

PROOF. The pairing is well-defined, since x1y " = 0 for y € CI(V) det(F)
and 1 € CI(V)F, hence tr(y' 1) = 0. The pairing satisfies

(y, o(2)[a]) = tr(y " 2z) = tr((="y) "2) = (o(z")y, [x]).
Choose a Lagrangian complement F’ to F, and view Sp as a subspace
A(F*) € CI(V) as in (34). The pairing between [x] = ¢ € Sp and y =
#'x € ST = A(F*)det(F), corresponding to ¢ = 1(¢')x € A(F), reads

(¥,¢) = tr(y" @) = tr(z"y) = o(d " ¢'X)0) = (¢ (@) = ({6
which is just the standard pairing between A(F*) and A(F). O

2.4. Irreducibility of the spinor module. We had encountered spe-
cial cases of the following result in our discussion of the Clifford algebras for
K = C. See §2, Proposition 2.6.

THEOREM 2.9. Let V' be a vector space with split bilinear form B, and
F C V a Lagrangian subspace. The spinor module Sg is irreducible, and the
module map
o: CI(V) — End(Sr)
is an isomorphism of super algebras. It restricts to an isomorphism

CI(V)? = End(S%) @ End(Sk).
Hence both SOF, S% are irreducible modules over C1(V)P.
are non-isomorphic.

These two modules

PROOF. We may use the model V.= F* @& F, Sp = A(F™). To prove
Cl(V) = End(SF), note that both spaces have the same dimension. Hence it
suffices to show that p is surjective. That is, we have to show that End(AF™)
is generated by exterior multiplications and contractions. Suppose first that
dimF =1, and let e € F', f € F* be dual generators, so that B(e, f) = %
Then AF™* has basis 1, f. In terms of this basis,

n=(90) ua=(p o) tne=(g ).

Together with the identity these form a basis of End(AF*) = Maty(K), as
claimed. The general case follows from the 1-dimensional case, using

End(A(FY @ Fy)) = End(AFT) @ End(AFY).
o8



CHAPTER 3. THE SPIN REPRESENTATION

This proves CI(V') = End(Sr), which also implies that the spinor module is
irreducible. It also gives

CI(V)? = End®(Sp) = End(S%) @ End(S}),

a direct sum of two irreducible modules. To see that the even and odd
part of the spinor module are non-isomorphic modules over CIO(V)'7 choose
bases e; of F and f* of F* such that B(e;, f7) = 367, thus e;f7 = 6] — fle;.
Consider the chirality element (20), written in the ‘normal-ordered’ form
(35) D= (1= 2fl) - (1 - 2f"ep).

Since o(1 —2f%;) f! = +f!, with a — sign if i € I and a minus signifi ¢ I,
we find that o(I') is the parity operator on Sp: it acts as +1 on S% and as
—1 on S};. In particular, these two representations are non-isomorphic. [

REMARK 2.10. The restrictions of the homomorphism p to A(F'), A(F™)
are the extensions of contractions and exterior multiplications as algebra
homomorphisms (still denoted ¢, €). Using the Proposition, we obtain that
the linear map

(36) AF*) @ A(F) = End(A(F)), Z bi @Y > Ze(@)bw)

is an isomorphism of super vector spaces. The operators on the right hand
side may be thought of as differential operators on the super algebra A(F™).

2.5. Abstract spinor modules. Theorem 2.9 motivates the following
definition.

DEFINITION 2.11. Let V be a vector space with split bilinear form. A
spinor module over Cl(V) is a Clifford module S for which the Clifford action

0: C(V) — End(S)

is an isomorphism of super algebras. An ungraded spinor module is defined
as an ungraded Clifford module such that g is an isomorphism of (ordinary)
algebras.

We stress that we take Clifford modules, spinor module etc. to be Za-
graded unless specified otherwise. By Theorem 2.9 the standard spinor
module Sg is an example of a spinor module, as is its dual S*".

THEOREM 2.12. Let V' be a vector space with split bilinear form.

(1) There is a unique isomorphism class of ungraded spinor modules
over CL(V).

(2) There are exactly two isomorphism classes of spinor modules over
ClV), represented by Sp, Sy .

(3) A given ungraded spinor module admits exactly two compatible Zo-
gradings. The corresponding parity operator is given by the Clifford
action of the chirality element T', normalized (up to sign) by the
condition I'? = 1.
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PROOF. Theorem 2.9 shows that as an ungraded algebra, C1(V) is iso-
morphic to a matrix algebra. Hence it admits, up to isomorphism, a unique
ungraded spinor module, proving (1). The chirality element I' € CL(V)
(cf. (35)) satisfies vI' = —I'v for all v € V. Hence p(v) exchanges the
+1 eigenspaces of o(I"), showing that o(I") defines a compatible Zo-grading.
Now suppose S = S°@®S! is any compatible Zo-grading. Since o(v) for v # 0
exchanges the odd and even summands, they both have dimension %dim S.
Hence they are both irreducible under the action of C1(V)". Since I is in
the center of C1(V)?, it acts as a scalar on each summand. It follows that
S% must be one of the two eigenspaces of o(I'), and S! is the other. This
proves (3). Part (2) is immediate from (1) and (3). O

The Theorem shows that if S, S’ are two spinor modules, then the space
Homcy(v)(S, S)
of intertwining operators is a 1-dimensional super vector space.

REMARK 2.13. For K = R, the choice of Zs-grading on an ungraded
spinor module over S is equivalent to a choice of orientation of V. Indeed,
the definition (20) of the chirality element I' € Spin(V') shows that the choice
of sign of I is equivalent to a choice of orientation on V.

As a special case, it follows that the spinor modules defined by two
Lagrangian subspaces F, F’ are isomorphic, possibly up to parity reversal,
where the isomorphism is unique up to a scalar. Recall that O(V) acts
transitively on the set Lag(V') of Lagrangian subspaces of V. Furthermore,
the stabilizer group O(V)r of any F' € Lag(V) is contained in SO(V).

DEFINITION 2.14. We say that F, F’ € Lag(V') have equal parity if they
are related by a transformation g € SO(V') and opposite parity otherwise.

(For K = R,C, the relative parity indicates if F, F’ are in the same
component of Lag(V).)

PROPOSITION 2.15. Let g € O(V) with g.F = F'. Then any lift x €
(V) of g determines an isomorphism of Clifford modules Sp — Spr. This
isomorphism preserves parity if and only if F, F' have the same parity.

PROOF. Suppose z € I'(V) lifts g, so that A, = g. Then F' = A,(F) =
H(z)Fz~! (as subsets of C1(V)). Hence

CIV)Fz~t = CI(V)F'.

Thus, right multiplication by z=! on C1(V') descends to an isomorphism of
Clifford modules S — Sgs. Note that this isomorphism preserves parity if
and only if x is even, i.e. g € SO(V). O

Given a spinor module S over Cl(V'), one obtains by restriction a group
representation of the Clifford group I'(V') and its subgroup Pin(V'). This is
called the spin representation of I'(V'). The action of ST'(V') preserves the
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splitting S = SO @ S!: the two summands are called the half-spin represen-
tations of ST(V') and of its subgroup Spin(V).

THEOREM 2.16. The spin representation of I'(V) on S is irreducible.
Similarly, each of the half-spin representations S° and S' is an irreducible
representation of ST' (V). The two half-spin representations of ST'(V') are
non-isomorphic. If K =R or K= C we can replace I'(V') with Pin(V') and
ST(V') with Spin(V).

PROOF. If a subspace of S is invariant under the action of I'(V'), then
it is also invariant under the subalgebra generated by I'(V). But I'(V)
contains in particular all non-isotropic vectors, and linear combinations of
non-isotropic vectors span all of V' and hence generate all of C1(V'). Hence
the subalgebra generated by I'(V') is all of C1(V'), and the irreducibility under
I'(V) follows from that under CI(V'). Similarly, the subalgebra generated by
ST(V) equals C1°(V), and the irreducibility of the half-spin representations
under ST'(V) follows from that under C1°(V'). O

3. Pure spinors

Let o: CI(V) — End(S) be a spinor module. If ¢ € S is a non-zero
spinor, we can consider the space of vectors in V' which annihilate ¢ under
the Clifford action:

F(¢) ={veV]o(v)¢ =0}
LEMMA 3.1. For all non-zero spinors ¢ € S, the space F(¢p) is an
isotropic subspace of V.

PROOF. If vy, v € F(¢) we have
0= (e(v1)e(v2) + o(v2)e(v1))¢ = 2B(v1, v2) ¢,
hence B(vi,v2) = 0. O

DEFINITION 3.2. A non-zero spinor ¢ € S is called pure if the subspace
F(¢) is Lagrangian.

Consider for instance the standard spinor module Sp = CI(V)/Cl(V)F
defined by a Lagrangian subspace F. Let ¢y € Sg be the image of 1 € CI1(V).
Then ¢q is a pure spinor, with F(¢¢) = F.

THEOREM 3.3. The representation of T'(V') on a spinor module S restricts
to a transitive action on the set of pure spinors. The map

(37) { P } — Lag(V), ¢ — F(¢)

spinors

is a T'(V)-equivariant surjection, with fibers K*. That is, if F(¢) = F(¢'),
then ¢, ¢’ coincide up to a non-zero scalar. All pure spinors ¢ are either
even or odd. The relative parity of pure spinors ¢, ¢’ is equal to the relative
parity of the Lagrangian subspaces F(¢), F(¢').
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PRrOOF. For any x € T'(V'), mapping to g € O(V),
Fo(x)9) = aF(¢)a™! = Tl(2)F(¢)a~" = Az.F(¢) = g.F ().

It follows that for any pure spinor ¢, the element o(x)¢ is again a pure
Spinor.

To prove the remaining claims, we work with the standard spinor module
Sr defined by a fixed Lagrangian subspace F. Let ¢g € Sg be the image of
1 € C(V), so that F(¢g) = F. Suppose ¢ is a pure spinor with F(¢) = F,
and consider the standard filtration on Sp. By Proposition 2.6, o(v) for
v € I has filtration degree —1, and gr~—'(p(v)) is the operator of contraction
by gr(Sr) = A(F*) given by contraction with v. Since [, ker(c(v)) =
A(F*) = K, we conclude that (0, ker(o(v)) = S(PE)) = K¢o. That is,
F C F(¢) if and only if ¢ is a scalar multiple of ¢y.

Consider now a general pure spinor ¢. Pick g € O(V) with g.F(¢) = F,
and choose a lift x € T'(V) of g. Then F(p(x)¢) = g.F(¢) = F, so that
o(z)¢ is a scalar multiple of ¢g. Since K* C I'(V), this shows that I'(V)
acts transitively on the set of pure spinors. The last statement follows since
any element of the Clifford group is either even or odd, thus o(x) lgg is
even or odd depending on the parity of x. ([

The following Proposition shows how the choice of a pure spinor identifies
S with a spinor module of the form Sg.

PROPOSITION 3.4. Let S be a spinor module over CL(V).
(i) For any pure spinor ¢ € S, one has
[z € CUV)| o(2)p = 0} = CUV)F(9).
Hence, there is a unique isomorphism of spinor modules S — Sp(g)
taking ¢ to the image of 1 in CL(V)/CL(V)F(¢). This identification
preserves or reverses the Zs-grading, depending on the parity of ¢.
(ii) Suppose ' C V' Lagrangian. Then the pure spinors defining F are
exactly the non-zero elements of the pure spinor line
lp={p€S|ow)p=0 YveF}
There is a canonical isomorphism,
Ir = Homgyvy(Sr, S).

(1) If S’ is another spinor module, and |}, the pure spinor line for F,
then
HOHIC](V) (S, S/) = HOIHK(|F, I/F)
canonically.

PRrROOF. (i) The left ideal C1(V)F(¢) annihilates ¢, defining a non-zero
Cl(V')-equivariant homomorphism Sg4) = CU(V)/CUV)F(¢) — S, [z] =
o(z)¢. Since Homgyv)(Sp(g),S) is 1-dimensional, this map is an isomor-
phism. In particular, o(z)¢ = 0 if and only if [z] = 0, i.e. x € CI(V)F(¢).
(ii) By definition, [y consists of spinors ¢ with F' C F'(¢). If ¢ is non-zero this
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must be an equality, since F(¢) is isotropic. This shows that the non-zero
elements of [ are precisely the pure spinors defining F', and (using Theo-
rem 3.3) that dim{r = 1. The isomorphism Iz = Homg(y)(SF,S) is defined
by the map taking ¢ € lp to the homomorphism Sp = CI(V)/Cl(V)F —
S, [z] = o(x)¢. (iii)) A Cl(V)-equivariant isomorphism S — S’ must restrict
to an isomorphism of the pure spinor lines for any Lagrangian subspace F.
This defines a non-zero map Homeyy)(S,S’) — Homg(IF,I%). Since both
sides are 1-dimensional, it is an isomorphism. ([l

Having established these general results, we proceed to give an explicit
description of all pure spinors for the standard spinor module Sg, using a
Lagrangian complement to F to identify V = F* @ F and Sp = A(F™).

PROPOSITION 3.5. Let V. = F*@® F. Then any triple (N, x,wn) consist-
ing of a subspace N C F, a volume form k € det(ann(N))* on V/N, and a
2-form wn € A2N* on N, defines a pure spinor

¢ = exp(—wn)Kk € A(F™).

Here O € N2F* is an arbitrary extension of wy to a 2-form on F. (Note
that ¢ does not depend on the choice of this extension). The corresponding
Lagrangian subspace is

F(¢)={(ug,v) e FF®F|ve N, Ywe N: (u,w) =wn(v,w) }.
Every pure spinor in S arises in this way from a unique triple (N, k,wn).
PRrOOF. We first observe that Lagrangian subspaces L C F* @ F are in

bijective correspondence with pairs (V,wy). Indeed, any such pair defines
a subspace of dimension dim F,

L:{(/,L,’U) EF*G}F‘ veEN, M|N:WN(U7')}'
If (p,v), (mu',v") € L then
<M7U/> + <N/7 v) = WN(U’U/) + WN(Ulv v) =0,

hence L is Lagrangian. Conversely, given L C F* ® F let N C F be its
projection, and define wy by

WN(U’U/) = <H7v/> = *(}/,U>

where (p,v), (4/,v") € L are pre-images of v,v’.

Suppose now that (N,wn, k) are given, and define ¢ as above. It is
straightforward to check that elements (i, v) with v € N and w|y = wn (v, -)
annihilate ¢. Hence F'(¢) contains all such elements, and equality follows for
dimension reasons. Conversely, suppose ¢ is a given pure spinor. Let N C F
be the projection of F(¢) C F* @ F to F. Then ann(N) C F(¢). Pick x €
det(ann(N))*. For v,w € N, let u,v € F* such that (u,v), (v,w) € F(¢).
Since F(¢) is isotropic, we have (p, w) + (v,v) = 0. Hence

C‘)N(U’ w) = <M’ w>
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is a well-defined skew-symmetric 2-form on N. Let Wy be an arbitrary
extension to a 2-form on V. Then F(¢) has the description given in the
Proposition, and hence coincides with F(e"“N k). It follows that ¢ is a non-
zero scalar multiple of e "N i, where the scalar can be absorbed in the choice
of k. O

In low dimensions, it is easy to be pure:

PROPOSITION 3.6. Suppose V' is a vector space with split bilinear form,
with dimV < 6, and S a spinor module. Then all non-zero even or odd
elements in S are pure spinors.

PROOF. Consider the case dim V' = 6 (the case dim V' < 6 is even easier).
We may use the model V. = F* @ F, S = A(F™). Suppose ¢ = ¢jg+¢jg € S0
is non-zero. If ¢ := @g) # 0 we have ¢ = texp(¢pp/t), which is a pure spinor
by Proposition 3.5. If ¢jq) = 0, then x := ¢y is a non-zero element of N2F*,
Since dim F' = 3, it has a 1-dimensional kernel N C F', with x a generator
of det(ann(/N)). But this again is a pure spinor by Proposition 3.5.

For non-zero odd spinors ¢ € SlL choose a non-isotropic v € V with
o(v)p # 0. Since ¢’ = po(v)p € SU is pure, the same is true of ¢ =
B(v,v) Lo(v)¢'. O

4. The canonical bilinear pairing on spinors

Given a spinor module S, the dual S* is again a spinor module. The
1-dimensional super vector space

Ks := Homgy(y)(S",S)

is called the canonical line for the spinor module. Its parity is even or
odd depending on the parity of %dim V. The evaluation map defines an
isomorphism of Clifford modules,

S*® Ks — S.

Note also that Ks« = K.
By Proposition 3.4, if ' C V is a Lagrangian subspace and s« r, Is
the corresponding pure spinor lines, we have

Kg = Homg (Is+ p,ls r) = Is r ® (Is< )"

ExAMPLE 4.1. Let ¥ C V be a Lagrangian subspace. We had seen
above that the dual of Sp = CI(V)/CI(V)F is canonically isomorphic to
SF = C1(V) det(F). The pure spinor lines |r for these two spinor modules
are

lsF p = det(F), s, r =K.
Hence
Kgr = det(F), Ks, = det(F").
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In terms of the identifications Sp = A(F*), SF' = A(F) given by the choice
of a complementary Lagrangian subspace, the isomorphism
Ksr = Homgyv) (A(F), A(F7)) = det(F)

is given by the contraction A(F) ® det(F*) — A(F*). Indeed, given a
generator of det(F™) the resulting map A(F) — A(F™*) intertwines ¢(p), €(v)
with e(u), ¢(v).

DEFINITION 4.2. The canonical bilinear pairing

('7')5: S®S_>K57 ¢®¢H(¢7¢)S
is the isomorphism S® S — S* ® S ® Kg followed by the duality pairing
S*®S — K.
The pairing (-, -)s satisfies

(38) (o(z)p, ¥)s = (¢, 0(x")¥)s, € CLV),

by a similar property of the pairing between S* and S (defining the Clifford
action on S*). Restricting to the Clifford group, and replacing v with o(x))
it follows that

(39) (o(x)o, o(x))s = N(z) (¢, ¢)s, xeI(V)
where N: I'(V) — K* is the norm homomorphism (33). The bilinear form
is uniquely determined, up to a non-zero scalar, by its invariance property:

PROPOSITION 4.3. Suppose o: CI(V) — End(S) is a spinor module, and
(+,): S xS = K is a bilinear pairing with the property

(e(x)9, o(x)y)s = N(z) (¢, ¢)s, = €T (V).

Then (-,-) coincides with the canonical pairing (-, -)s, for some trivialization
Ks =~ K.

PRrOOF. The invariance property implies that (o(z)¢, ) = (¢, o(z "))
for all z € I'(V), hence (by linearity) for all x € C1(V'). This shows that the
bilinear pairing gives an isomorphism of Clifford modules S — S*. It hence
provides a trivialization of Ks = Homcyy(S*,S) identifying (-,-) with the
pairing (-, )s. O

EXAMPLE 4.4. For the Clifford module Sp = CI(V)/CL(V)F defined
by a Lagrangian subspace F, one has Ks, = det(F™*). To explicitly write
down the pairing, choose a Lagrangian complement in order to identify
Sr = A(F™). Then the pairing is given by
(40) (6,%)s = (67 A rop)-

We next turn to the symmetry properties of the bilinear form.

PROPOSITION 4.5. Let dimV = 2m. The canonical pairing (-,-)s is
o symmetric if m = 0,1 mod 4,
o skew-symmetric if m = 2,3 mod 4.
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Furthermore, if m = 0 mod 4 (resp. m = 2 mod 4) it restricts to a non-
degenerate symmetric (resp. skew-symmetric) form on both SY and S'. If
m is odd, then the bilinear form vanishes on both SO, S', and hence gives a
non-degenerate pairing between them.

PrROOF. We may use the model V.= F* @ F, S = A(F*). Let ¢ €
ANF(F*), b € A™F(F*). Then

W, d)s=v" Ao
_ (_1)(m—k)(m—k—1)/2¢ A
(_1)(m—k)(m—k—l)/2+k(m—k)¢ A
— (_1)(m—k:)(m—k;—1)/2+k:(m—k)+k(k:—1)/2¢‘|' A @Z}
(-1

This gives the symmetry property of the bilinear form. If m is even, then S0
and S' are orthogonal under this bilinear form, and hence the bilinear form
is non-degenerate on both. ([

REMARK 4.6. Suppose m = 0,1 mod 4, so that (-,-)s is symmetric.
Then

(41) (e(v)¢, o(w)d)s = B(v,w)(9, P)s.
.

If v = w this follows from the invariance property (since N(v) = v'v =
B(v,v), and in the general by polarization. The identity shows that if
(¢,¢)s # 0 then the null space F(¢) is trivial. Indeed, for all v € F(¢)
the identity implies B(v,w) = 0 for all w, hence v = 0.

THEOREM 4.7 (E. Cartan-Chevalley). Let S be a spinor module. Let
o, ¥ €S be pure spinors. Then the pairing (¢,1)s is non-zero if and only
if the Lagrangian subspaces F(¢), F(¢) are transverse.

ProOOF. We work in the model V = F* @ F and S = AF*, using the
formula (40) for the pairing.
‘«". Suppose F(¢) N F(¢)) = 0. Choose A € O(V) such that A~! takes
F(¢),F(¢) to F*, F respectively. Let x € I'(V) be a lift, i.e. A, = A.
Then o(z)~1¢, o(x)~ 14 are pure spinors representing F*, F, hence they are
elements of det(F™*)*, K* respectively. By (40) their pairing is non-zero,
hence also

(¢:9)s = N(x) (e(x) ™", 0(z) " )s # 0.

‘=". Suppose (¢, 1)s # 0. Choose x € I'(V') with 1) = o(z).1. Then

0 7é N($)(¢,1/1)S = (Q(x)_1¢7 1)5 = (Q($)_l¢)[top]-

In particular, o(z) !¢ is not annihilated by any non-zero o(v), v € F. Hence
F(o(x)"1¢)NF = 0, and consequently F(¢)NF () = F(¢)NAL(F) =0. O
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REMARK 4.8. More generally, we could also consider two different spinor
modules S, S’. One obtains a pairing

(,): 8 ®8 28" ®Hom(S8*,8') ® S — Hom(S*,8').

As before, the Lagrangian subspaces defined by ¢ € S, ¢’ € S’ are transverse
if and only if (¢, ¢’) # 0.

In particular, Theorem 4.7 shows that pure spinors satisfy (¢, ¢)s = 0.
In dimension 8, the converse is true.

PROPOSITION 4.9 (Chevalley). [22, IV.1.1] Suppose V is a vector space
with split bilinear form, with dimV = 8, and S a spinor module. Then
a non-zero even or odd spinor ¢ € S is pure if and only if (¢,¢)s = 0.
Furthermore, the spinors ¢ with (¢, ¢)s # 0 satisfy F(¢) = 0.

Proor. We work in the model V = F* @ F, with the spinor module
Sp = AF*. Suppose ¢ € Sg is an even or odd non-zero spinor with (¢, ¢)s =
0. We will show that ¢ is pure. Suppose first that ¢ is even. Then

0= (¢, 9)s = 20[0)¢a] — P2 A Pp2)-
If ¢j9) # 0, we may rescale ¢ to arrange ¢jg) = 1. The property ¢y =
%gb[g] A ¢z then means ¢ = exp(¢)), which is a pure spinor. If ¢(g = 0, the
property @9 A ¢pg) = 0 tells us that ¢ = put A p? for suitable pt, pu? € F*.
Let w be a 2-form such that ¢ Aw = ¢y, then ¢ = pg A g A exp(w) which

is again a pure spinor. If ¢ is odd, choose any non-isotropic v. Then o(v)¢

is an even spinor, with (o(v)¢, o(v)d)s = B(v,v)(¢, ¢)s = 0. Hence o(v)¢ is
pure, and consequently ¢ is pure.

On the other hand, if (¢, ¢)s # 0, and v € F(¢), then (41) shows

0= (e(v)¢, o(w)¢)s = B(v,w)(¢, ¢)s
for all w € V. Hence B(v,w) = 0 for all w and therefore v = 0. O

5. The character x: I'(V)r — K*

Let FF C V be a Lagrangian subspace. By §1, Proposition 3.4 the group
O(V)p of orthogonal transformations preserving F' is contained in SO(V'),
and fits into an exact sequence,

1 = A%(F) = O(V)p — GL(F) — 1.
Let T'(V)p C ST(V) be the pre-image of O(V)p in the Clifford group, and
Spin(V)p =T'(V)pNPin(V). Thus x € I'(V) p if and only if A, preserves F'.
The action p(x) of such an element on the spinor module S must preserve
the pure spinor line [p. This defines a group homomorphism
x: D(V)p — KX,

with o(x)¢ = x(x)¢ for all z € I'(V)p, ¢ € lp. Clearly, this character is
independent of the choice of S.
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PROPOSITION 5.1. The character x satisfies
x(2)? = N(z) det(Ay|r)

for allz € T'(V)p. Hence, the restriction of x to the group Spin(V) g defines
a square root of the function x — det(Az|F).

PrOOF. We work in the model V = F* @ F, S = A(F*), so that x(z) =
o(x).1. It suffices to check the following two cases: (i) A, fixes F' pointwise,
and (ii) A, preserves both F' and F™*.

In case (i) A, is given by an element A € A%(F'), and hence x = texp(—\)
for some non-zero t € K. We have det(A;|r) = 1. The action of x on
1 € A(F*) is multiplication by ¢, hence x(x) = t, while N(z) = t2. This
verifies the formula in case (i).

In case (ii), let Q@ = A|r € GL(F). Then A (p,v) = ((Q~1)*u, Qu).

For all v € F* we have avaz~—! = A,(v) = (Q71)*v, where we used
II(x) = x. It follows that

et = (@)
for all 1 € A(F*) C CI(V). Take ¢ € det(F*)*, so that (Q~1)*y = ﬁlﬁ-
We obtain:

o(@) = o(z )1 = o(wpa™")olx)1 = f(txgz

Pairing with p(z)1 = x(«), and using the invariance property of the bilinear
form, we find

0.

NS = (o(o) 1 eo))s = S0,

hence x ()% = N(z) det(Q). O

Let K, denotes the I'(V) p-representation on K, with z € I'(V) ¢ acting
as multiplication by x(z).

PROPOSITION 5.2. This fiber of the associated line bundle
F(V) XF(V)F KX — Lag(V)
at L € Lag(V) is the pure spinor line Iy, C Sp.

PROOF. Since z € I'(V)F acts as x(x) on lp C Sp = CI(V)/CYV)F, we
have z = x(z) mod CI(V)F for all x € T'(V)p. Thus

x(z)z7™' =1 mod CI(V)F.
Now let (z,t) € I'(V) x K, and put L = A.(F). The map CI(V) —
ClV), y > tyz takes CI(V)L to CI(V)F, hence it descends to an element
of Homey(v)(St,Sr) = Ip. If (2/,') = (zz~ !, x(2)t) with z € T(V)p, then
t'y? = x(x)tyze~' = tyz mod CI(V)F,
thus (2/,t') defines the same homomorphism as the element (z,t). O
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If the map Pin(V)) — O(V) is onto (e.g. if K = C), the line bundle has
a description

Pin(V) Xpinvy, Ky,

where Pin(V)r = Spin(V) r acts via the character z — x(z) = det'/2(A,|r).

6. Cartan’s Triality Principle

If dim V' = 8, one has the remarkable phenomenon of triality, discovered
by E. Cartan [17].

The following discussion is based on Chevalley’s exposition in [22]. Let
0: CI(V) — End(S) be a spinor module, and let I € Spin(V') be the chirality
element, with the unique normalization for which o(T") is the parity operator
of S. Since I, 1 span the center of the algebra C1°(V), and since the linear
span of Spin(V) is all of C1°(V), the center of the group Spin(V) consists of
four elements

(42) Cent(Spin(V)) ={1,-1,T", -T'}.

The two half-spin representations S”, S* of Spin(V) are irreducible represen-
tations of dimension 8. In addition, one has the 8-dimensional representation
onVviam: Spin(V) — SO(V), x — A,. These three representations are all
non-isomorphic, and are distinguished by the action of the center (42). In-
deed, the central element —1 € Spin(V') acts trivially on V since 7(—1) = I,
while it acts as —id in the half-spin representations. The triality principle,
Theorem 6.1 below, shows that there is a degree 3 automorphism of Spin(V')
relating the three representations.
Form the direct sum

A=vVeas'es.
Since dim V' = 8, Proposition 4.5 shows that the canonical bilinear form
(-,+)s is symmetric, and restricts to non-degenerate bilinear forms on S°, S!,
After choice of a trivialization Kg = K, it becomes a scalar-valued symmetric
bilinear form; its direct sum with the given bilinear form B on V is a non-
degenerate symmetric bilinear form B4 on A. The corresponding orthogonal

group is denoted O(A), as usual. Let pa: ST'(V) — Aut(A) be the triagonal
action on A. Then o4 (Spin(V)) C O(A).

THEOREM 6.1 (Triality). There exists an orthogonal automorphism J €
O(A) of order 3 such that

(43) JVy=s! JihH=s JsYH=v

Furthermore, there is a group automorphism j € Aut(Spin(V)) of order 3
such that

(44) Joga(z) = 0a(i(x)) o J
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for all x € Spin(V'). One hence obtains a commutative diagram, for x €
L),

v Si S0

J J
lg(m o(i()) l@(j(j(x)))
v st so

J J

A key ingredient in the proof is the following cubic form on A,
(45) OA: A— K7 g = (Ua ¢07 ¢i) — (Q(v)¢6a ¢i)57

LEMMA 6.2. The cubic form Ca satisfies Ca(oa(x)€) = N(x)Ca(§) for
all x € ST(V). Hence, 04(x), x € ST(V) preserves Cy precisely if x €
Spin(V).

PROOF. For € = (v, ¢°, ¢1),
Caloa(@)€) = (0(Az(v))o(x)¢, o(x)$!)s
= (o(x)0(v)¢, o(x)¢1)s

N(@)(0(v)", ¢")s = N(2)Ca(£).
(]

We will construct the triality automorphism J in such way that it also
preserves C'4.

LEMMA 6.3. Any f € O(A) preserving each of the subspaces V, S0.S1 and
preserving the cubic form Cy is of the form pa(z), for a unique x € Spin(V).

PROOF. For all € = (v, ¢°, ¢') we find

(o(f(0)) f(8"), F(61))s = (0(v)8, 8" )s = (f(o(v)d°), F(61))s

where the first equality used invariance of C'4 and the second equality the
invariance of B4. Consequently

flo(v)d) = o(f(v))f(8)
for all even spinors ¢. On the other hand, any odd spinor can be writ-
ten ¥ = p(v)¢, hence the identity gives f(v) = o(f(v))f(o(v)~ ) =
o(f(v))B(v,v)~" f(e(v)¥) = o(f(v)) "' fle(v)y). Thatis, f(o(v)¥) = o(f(v))f(¥)

for all odd spinors. This shows

(46) o(f(v)) = (fls) o e(v) o (fls)~".

Since f|s is an even endomorphism of S, it is of the form p(z) for some
x € CI°(V). Equation (46) shows that o(f(v)) = o(zvez™!) = o(A.(v)),
hence f(v) = Az(v) and in particular z € ST(V). We have shown that

f = 0a(z). Using again the invariance of C'4 and the previous Lemma, we
obtain N(z) = 1, so that « € Spin(V). O
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PROOF OF THEOREM 6.1. Pick n € V and ¢ € SO with B(n,n) =
1, (¢,9)s = 1. Let R, and R, be the corresponding reflections in V, S,
The map
V = Shve o(v)g

is an isometry (see Remark 4.6); let 7} : ST — V be the inverse map. Define
orthogonal involutions u, 7 € O(A) by

(v, 6%, ¢1) = (Ra(v), o(n)d', o(n)¢?),
7(v,¢°, o) = (Ty(¢1), Ry(¢°), 0(v)q).

Note that p preserves V' and exchanges the spaces Sﬁ, Si, while 7 preserves
SY and exchanges the spaces V,S!. Hence, the composition

J=T1oue0O(A)

satisfies (43). Let us verify that J3 = id4. It suffices to check on elements
veV C A We have:

u(v) = Rn(v) = —nun,
Tr(v) = —o(nvn)q
putp(v) = —o(vn)q
TuTp(v) = —o(vn)q + 2(e(vn)q, q)s q
= —o(vn)q +2B(v,n)q
= o(nv)q

prpTp(v) = o
TuTpuT(v) = v

Hence J3v = v as claimed. We next show that the cubic form C'4 changes
sign under u, 7, and hence is invariant under .J. For & = (v, ¢?, ¢!), we have

Ca(u(€)) = (e(Bu(v)n)6", o(n)¢")s = —(0(0)8", ¢")s = ~Ca(€).
The computation for 7 is a bit more involved. Let w = T,(¢'), so that
o(w)q = ¢'. Then
Ca(m(9) = (o(w)Ry(6°), 0(v)9)s
= (Rq(¢), e(wv)a)s
= (0", o(wv)q)s — 2(6", 4)s(q, o(wv)a)s
=2B(v,w)(8",a)s — (6", o(v)¢")s — 2(6", a)s (o(w)a, 0(v)0)s
= —(¢", 0(v)d")s
= —(e(v)8, ¢")s = ~Ca(&).
Hence C4(J(€)) = Ca(§). Suppose now that x € Spin(V'). Then
Jooa(x)oJ !
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preserves By, C4 and the three subspaces V, S’ S'. By Lemma 6.3 we may
write this composition as p4(j(x)) for a unique element j(x) € Spin(V).
Using the uniqueness part of Lemma 6.3 we find j(z1)j(z2) = j(z122) and
3GG(@))) = . O

REMARK 6.4. The theory described here carries much further. Using
polarization, the cubic form Cj defines a symmetric trilinear form Ty €
S3(A*), with T (&, €,€) = Ca(€). This form defines a ‘triality pairing’: That
is, T (&1, &2, &3) is a non-degenerate bilinear form in &1, &, for arbitrary fixed
non-zero £3. In turn, this triality can be used to construct an interesting
non-associative product on V', making V into the algebra of octonions. A
beautiful discussion of this theory may be found in the paper [9] by Baez.

7. The Clifford algebra Ci(V)

In this Section, we denote by V' a vector space over K = R, with a positive
definite symmetric bilinear form B. The complexification of the Clifford
algebra of V coincides with the Clifford algebra of the complexification of V,
and will be denote CI(V). It carries the additional structure of an involution,
coming from the complex conjugation operation on V¢, and one can consider
unitary Clifford modules compatible with this involution. In this Section,
we will develop the theory of such unitary Clifford modules, and present a
number of applications to the theory of compact Lie groups.

7.1. The Clifford algebra CI(V). Let V be the complexification of
V. For v € VC we denote by T its complex conjugate. The Hermitian inner
product of VC will be denoted (-,-), while the extension of B to a complex
bilinear form will still be denoted B. Thus (v, w) = B(7,w) for v,w € VC.
We put

Cl(V) := Cl(VE) = Ccl(V)E.

The complex conjugation mapping v — T on VC extends to an conjugate
linear algebra automorphism x — 7 of the complex Clifford algebra CI(V').
Define a conjugate linear anti-automorphism

=T,

Thus (zy)* = y*z* and (ux)* = ux* for u € C.

DEFINITION 7.1. A unitary Clifford module over CI(V) is a Hermitian
super vector space E together with a morphism of super x-algebras CI(V') —
End(E).

Thus, for a unitary Clifford module the action map o satisfies o(z*) =
o(z)* for all z € CI(V). Equivalently, the elements of v € V. C Ci(V)
act as self-adjoint operators. Note that for a unitary Clifford module, the
representations of Spin(V'), Pin(V') preserve the Hermitian inner product.
They are thus unitary representations.
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EXAMPLE 7.2. The Clifford algebra CI(V') itself carries a Hermitian in-
ner product, (z,y) = tr(xz*y). Let o: CI(V) — End(CIl(V)) be the ac-
tion by left multiplication. For v € V C VC we have v* = v, hence
(x, vy) = (vx, y) for all z € Cl{(V). This shows that CI(V) is a uni-
tary CI(V)-module. Arguing as in the proof of §2 Proposition 2.14, we see
that the quantization map intertwines the Hermitian inner product on AVC,
given by (vi A+ Avg, wiA---Awyg) = det(v;, w;), with the Hermitian inner
product (z, y) = tr(z*y) on CI(V).

Since CI(V') has a faithful unitary representation, such as in the previous
example, it follows that CI(V') is a C*-algebra. That is, it carries a unique
norm || - || relative to which it is a Banach algebra, and such that the C*-
identity ||z*x|| = ||z||? is satisfied. This norm is equal to the operator norm
in any such presentation, and is explcitly given in terms of the trace by the
formula .

. * n\ 2n
llall = lim_(‘tr(a"a)") ™.
Note that this C*-norm is different from the Hilbert space norm tr(a*a)'/2.

7.2. The groups Spin, (V) and Pin.(V). Suppose z € I'(V®), defining
a complex transformation A,(v) = (—=1)*lzvz=! € O(VC) as before.

LEMMA 7.3. The element x € T'(VC) satisfies Ap(v)* = Az(v*) for all
v € VC, if and only if x*x is a positive real number.

Proor. For all z € T(VC) and all v € VC, we have
A ()" = (1)@ vt = A1y (vF).
This coincides with A, (v*) for all v if and only if + = A(z™!)* for some

A € C*, ie. if and only if z*x € C*. Since x*x is a positive element, this
condition is equivalent to x*x € R<g. O

DEFINITION 7.4. We define
Lo(V) ={z e T(V®)| 2°z € Ruo}
Pin.(V) = {z e T(VY)| 2"z =1}
Spin, (V) = Pin.(V) N ST(VE).
If V = R" with the standard bilinear form, we write I'.(n), Pin.(n), Spin.(n).

By definition, an element z of the Clifford group lies in I'.(V') if and only
if the automorphism A, € O(VC) preserves the real subspace V. That is,
I'.(V) c T(VC) is the inverse image of O(V) € O(VC). The exact sequence
for T'(VC) restricts to an exact sequences,

1=5C* =T (V)=0(V)—=1

1—-U(1) — Pin(V) - O(V) — 1,

1 — U(1) — Spin. (V) — SO(V) — 1,
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where we have used C* N Pin.(V) = C* N Spin, (V) = U(1).

One can also directly define Pin.(V), Spin.(V) as the subgroups of
I'(VC) generated by Pin(V'), Spin(V) together with U(1). That is, Spin.(V)
is the quotient of Spin(V') x U(1) by the relation

(.’IJ, e\/?lzﬁ) ~ (—J), _e\/jlw)

and similarly for Pin.(V'). A third viewpoint towards these groups, using the
spinor module, is described in Section 7.3 below. The norm homomorphism
for I'(VC) restricts to a group homomorphism,

N:T.(V) = C*, x> 'z

On the subgroup Pin.(V) this may be written N(x) = z~ 'z, which evidently
takes values in U(1).
Together with the map to O(V') this defines exact sequences,

1—=Zy—T(V)=0O(V)xC* =1,
1 —Zs = Pin,(V) - O(V) xU(1) = 1,
1 — Zs — Spin.(V) = SO(V) x U(1) = 1

One of the motivations for introducing the group Spin.(V') is the follow-
ing lifting property. Suppose J is an orthogonal complex structure on V/,
that is, J € O(V) and J2 = —I. Such a J exists if and only if n = dim V is
even, and turns V into a vector space over C, with scalar multiplication

(a +vV—=1b)x = ax + bJx.

Let U;(V) € SO(V) be the corresponding unitary group (i.e. the elements
of SO(V) commuting with J).

THEOREM 7.5. The inclusion Uj(V') < SO(V') admits a unique lift to a
group homomorphism Uj(V) < Spin,(V), in such a way that its composite
with the map N: Spin. (V) — U(1) is the complex determinant U;(V) —
U(1), A dety(A).

ProOF. We have to show that the map
Uj(V) = SO(V) x U(1), A (A, detj(A))

lifts to the double cover. Since U;(V') is connected, if such a lift exists then it
is unique. To prove existence, it suffices to check that any loop representing
the generator of m (U (V) = Z lifts to a loop in Spin.(V'). The inclusion
of any non-zero J-invariant subspace V' C V induces an isomorphism of the
fundamental groups of the unitary groups. It is hence sufficient to check for
the case V = R?, with J the standard complex structure Je; = ey, Jey =
—ejp. Our task is to lift the map

U(1) = SO(2) x U(1), eV~ — (R(6),eV™17)
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to the double cover, Spin,(R?). This lift is explicitly given by the following
modification of Example 1.11,

z(0) = eﬁe/Q(cos(H/Q) +sin(6/2) ereq) € Spin,(R?).
Indeed, (6 + 27) = 2(0) and N(z(h)) = eV~ 1. O

REMARK 7.6. The two possible square roots of det;(A) for A € U;(V)
define a double cover,

Us(V) ={(A,2) € Uy(V) x C*| 2> = det(A)}.
While the inclusion U,;(V) < SO(V) does not live to the Spin group, the
above proof shows that there exists a lift U;(V) — Spin(V') for this double

cover. Equivalently, U 7(V) is identified with the pull-back of the spin double
cover.

7.3. Spinor modules over CI(V). We will now discuss special fea-
tures of spinor modules over the complex Clifford algebra CI(V'), for an
even-dimensional real Fuclidean vector space V.

The first point we wish to stress is that, similar to Remark 2.13, the
choice of a compatible Zs-grading on a spinor module S is equivalent to the
choice of orientation on V. Indeed, let ey, ..., e, be an oriented orthonor-
mal basis of V', where dim V' = 2m. Then the chirality element is

I'=(v—1)"ey---eam € Spin, (V).
The normalization of T' is such that I'? = 1. Changing the orientation
changes the sign of I', and hence changes the parity operator o(T').
If the spinor module is of the form Sp for a Lagrangian subspace F' €

Lag(V®), we also have the orientation defined by the complex structure .J
corresponding to F'. (See §1, Section 7.) These two orientations agree:

PROPOSITION 7.7. Let F be a Lagrangian subspace of VC, and J the cor-
responding orthogonal complex structure having F as its +v/—1 eigenspace.
Then the orientation on V defined by J coincides with that defined by the
Zo-grading on Sg.

PRrROOF. The orientation defined by J is given by the volume element
e1 N\ -+ A en, where e; is an orthonormal such that Jes; 1 = es;. The
Lagrangian subspace F' is spanned by the orthonormal (for teh Hermitian

metric) vectors
1
E; = 5(623'—1 — V—leg;).

We claim that the chirality element given by the basis e; acts as +1 on S(}
and as —1 on SkL. We have

1
S(e2j-1 — V—legj)(e2j—1 + vV —legj) = V—legj_1e9; + 1,

EjEj = 5

hence

I'=(E1E1—1)- (BEnEm—1).
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{i1,...,ix} let By = E;; A+~ ANE;. € AF = Sp. The operator
1) acts as 0 on Eyifi ¢ I, and as —1 if i € I. Hence o(I") acts on
1)¥, proving the claim. O

r [ =
Q(E B —
as (—
As a special case of unitary Clifford module, we have unitary spinor
modules. These are Clifford modules S with the property that o: CI(V) —

End(S) is an isomorphism of super %-algebras. Equivalently, the CI(V)-
action on S is irreducible.

PROPOSITION 7.8. Any spinor module S admits a Hermitian metric,
unique up to positive scalar, for which it becomes a unitary spinor module.

PrROOF. Let F € Lag(V®). Then Sp is a unitary spinor module, and
the choice of an isomorphism S = Sy determines a Hermitian metric on S.
Conversely, this Hermitian metric is uniquely determined by its restriction
to the pure spinor line Ig, since o(Cl(V))lp =S. O

For any two unitary spinor modules S,S’, the space Homg(S,S’) of in-
tertwining operators inherits a Hermitian metric from the full space of ho-
momorphisms Hom(S,S’), and the map

S® HOIH(C[(S, S/) -9

is an isomorphism of unitary Clifford modules. Taking S’ = S, we have
Homgy(S,S) = C and the group of CI(V')-equivariant unitary automorphisms
of S is the group U(1) C C.

Using unitary spinor modules, one obtains another characterization of
the groups Pin.(V') and Spin,(V'). Suppose dim V' is even, and pick a unitary
spinor module S. An even or odd element U € U(S) implements A € O(V)
if

0(A(v)) = det(A) U o o(v) o U™
for all v € V, with det(A) = +1 depending on the parity of U.

PROPOSITION 7.9. Suppose dim V' is even. For any unitary spinor mod-
ule S, the map Pin.(V') — U(S) is injective, with image the group of imple-
menters of orthogonal transformations of V. Similarly Spin, (V') is isomor-
phic to the group of implementers of special orthogonal transformations.

PrROOF. Let A € O(V) be given. If z € Pin.(V) is a lifts A, then
det(A) zvz~! = A(v) for all v € V, and consequently U = o(x) satisfies
Uo(v)U™! = det(A)o(A(v)). Conversely, suppose U is a unitary element of
parity det(A) = 1, implementing A. Let x be the unique element in CI(V)
with o(xz) = U. Thus det(4) = (—=1)!*, and o((=1)*lzvz=1) = o(A(v)),
hence (—1)*lzvz=! = A(v) since o is faithful. Similarly N(z) = z*z €
U(1). O

Thus, Pin. (V) and Spin.(V') are realized as unitary implementers in S,
of orthogonal and special orthogonal transformations, respectively.
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7.4. Classification of irreducible C/(V)-modules. Let V' be a Eu-
clidean vector space. We have seen that if dim V' is even, there are two iso-
morphism classes of irreducible CI(V)-modules, related by parity reversal.
We will now extend this discussion to include the case of dim V' odd. Recall
once again that by default, we take Clifford modules to be equipped with
a Zo-grading. Such a module is irreducible if there is no non-trivial invari-
ant Zs-graded subspace. As we will see, the classification of such Zs-graded
Clifford modules is in a sense ‘opposite’ to the classification of irreducible
ungraded Clifford modules.

The orientation on V' determines the chirality operator

[ = (v=1)"(""D/2%, ...e, € Pin.(V)

where n = dim V' and eq,...e, is an oriented orthonormal basis; it satisfies
I'2 = 1. For n odd, the element I' is odd, and it is an element of the
(ordinary) center of CI(V'). For n even, the element I' is even, and it lies in
the super-center of CI(V'). There is a canonical isomorphism of (ordinary)
algebras

(47) CU(V) = CI°(V @ R),

determined (using the universal property) by the map on generators v
/—1ve, where e is the standard basis vector for the R summand. Since
(vV—1ve)* = —/—1lev* = y/—1v*e this map is a *-isomorphism. If n is odd,
the isomorphism (47) takes the chirality element of CI(V') to the chirality
element for CI(V @ R), up to a sign.

THEOREM 7.10. Let V' be a Fuclidean vector space of dimension n, and
CU(V) its complexified Clifford algebra.

i Suppose n is even. Then there are:
e two isomorphism classes of irreducible Zs-graded CL(V')-modules,
e a unique isomorphism class of irreducible ungraded Cl(V')-
modules, .
e two isomorphism classes of irreducible CI°(V)-modules.
ii Suppose n is odd. Then there are:
e o unique isomorphism class of irreducible Zo-graded CI(V')-
modules,
o two isomorphism classes of irreducible ungraded Cl(V')-modules,
e a unique isomorphism class of irreducible CI°(V)-modules.

Note that an irreducible Zs-graded module may be reducible as an un-
graded module: There may be invariant subspaces which are not Zs-graded
subspaces.

PROOF. We may assume V = R", and let I';, € Cl(n) be the chirality
element for the standard orientation. Note also that the third item in (i),(ii)
is equivalent to the second item in (ii),(i) since Cl(n — 1) = CI%(n).

(i) Suppose n is even. We denote by S,, a spinor module of Cl(n), with
Zo-grading given by the orientation of R™. By the results of Section 2.5,
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S, represents the unique isomorphism class of ungraded irreducible Ci(n)-
modules, while S,,, S5F represent the two isomorphism classes if irreducible
Zs-graded spinor modules. (The latter are distinguished by the action of
ry.)

(ii) Suppose n is odd. Then

Cl(n) 2 Cl°(n+1) 2 End’(Sp+1) = End(SY, ;) ® End(S; )

identifies Cl(n) as a direct sum of two matrix algebras. Hence there are two
classes of irreducible ungraded Cl(n)-modules (given by S2., and S} ;).
These are distinguished by the action of the chirality element I';, (note that
the map to CI°(n + 1) takes ', to T'p41, up to sign). -

It remains to classify irreducible Zs-graded Cl(n)-modules E = E°@ E*,
for n odd. If n = 1, since dim Cl(1) = 2 the Clifford algebra Ci(1) itself is an
example. Conversely, if E' is an irreducible Cl(1)-module, the choice of any
non-zero element ¢ € EY defines an isomorphism CI(1) — E, =+ o(z)é.
For general odd n, write Cl(n) = Cl(n — 1) ® CI(1). If E is an irreducible
Zs-graded Cl(n)-module, then Fy = Homc,,—1)(Sn—1, F) is a Za-graded
Ci(1)-module. This gives a decomposition

E=S5,1® Hom(Cl(nfl) (Sp-1, E)

as Zg-graded Cl(n —1) ® Ci(1) = Cl(n)-modules (using graded tensor prod-
ucts). Since E is irreducible, the Zs-graded CI(1)-module E; must be irre-
ducible, hence it is isomorphic to CI(1). This proves that £ = S,_; @ Ci(1)
as a Zg-graded Cl(n — 1) ® CI(1) = Cl(n)-module. O

REMARK 7.11 (Restrictions). Any Cl(n)-module can be regarded as a
Cl(n — 1)-module by restriction. By dimension count, one verifies:

(1) If nis even, then the ungraded module S,, restricts to a direct sum of
the two non-isomorphic ungraded Ci(n — 1)-modules (given by the
even and odd part of S;,). The two Zs-graded modules S,,, S;F both
become isomorphic to the unique Zs-graded module over Cl(n—1).

(2) If n is odd, then the restrictions of the two irreducible ungraded
Cl(n)-modules to Ci(n — 1) are both isomorphic to S,,_1, while the
restriction of the irreducible Zs-graded Cl(n)-module is isomorphic
to a direct sum S,,_1 B S;" ;.

7.5. Spin representation. We saw that up to isomorphism, the al-
gebra CI%(V) has two irreducible modules if n = dimV is even, and a
unique such if n is odd. These restrict to representations of the group
Spin(V) € CI%(V), called the two half-spin representations if n is even, re-
spectively the spin representation if n is odd. If V = R", it is customary to
denote the two half-spin representations (for n even) by A*, and the spin
representation (for n odd) by A,. Here Al (resp. A;) is the half-spin
representation where I'), acts as +1 (resp. as —1).

More concretely, taking V = R?™ with the spin representation defined

by its standard complex structure Jeg;_1 = ez;, we may take AZim to be
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the even and odd part of Sz, = AC™, and Aoy, 1 = Sopm—2 = AC™1 (the
spinor module over Cl(2m — 2) = C1°(2m — 1)).

PROPOSITION 7.12. (i) If n is even, the two half-spin representa-
tions AF of Spin(n) are irreducible, and are non-isomorphic. Their
restrictions to Spin(n — 1) are both isomorphic to A,_1.

(ii) If n is odd, the spin representation A, is irreducible. Its restriction
to Spin(n — 1) is isomorphic to A1 = AL O A .

ProOF. This is immediate from the classification of irreducible Clﬁ(n)—
modules, since Spin(n) generate Clo_(n) as an algebra. (Note e.g. that

Spin(n) contains the basis e; of Cl%(n), where I ranges over subsets of
{1,...,n} with an even number of elements.) O

We recall some terminology from the representation theory of compact
Lie groups G (see e.g. [15, 26]). Let H be a Hermitian vector space carrying
a unitary G-representation. The inner product on H will be denoted (-, -).

(i) H is of real type if it admits a G-equivariant conjugate linear endo-
morphism C with C? = I. In this case, H is the complexification
of the real G-representation Hr given as the fixed point set of C.
Representations of real type carry a non-degenerate symmetric bi-
linear form (¢, 1) = (C¢, ). Conversely, given a G-invariant non-
degenerate skew-symmetric bilinear form, define a conjugate linear
endomorphism T by (¢,v) = (T'¢,1)). The square T? € End(H) is
C-linear, and is positive definite. Hence |T| = (T%)"/? commutes
with T, and C = T|T|~! defines a real structure. We will call the
bilinear form compatible with the Hermitian structure if C' =T
(ii) H is of quaternionic type if it admits a G-equivariant conjugate lin-
ear endomorphism C with C? = —I. In this case, C gives H the
structure of a quaternionic G-representation, where scalar multipli-
cation by the quaternions 4, j, k is given by i = /=1, j = C, k = ij.
From C one obtains a non-degenerate skew-symmetric bilinear form
(p,1) = (C, ). Conversely, given a G-invariant non-degenerate
symmetric bilinear form, define a conjugate linear endomorphism
T by (¢,10) = (T, ). Again, |T| = (—T2)Y/? commutes with T,
and C = T|T|~! defines a quaternionic structure. We will call the
bilinear form compatible with the Hermitian structure if C' =T
(iii) For G-representations H of real or quaternionic type, the structure
map C gives an isomorphism with the dual G-representation H*.
That is, such representations are self-dual. We will call a unitary
G-representation of complex type if it is not self-dual.

For a real or quaternionic representation, the corresponding bilinear form
defines an element of Homg(H, H*). If H is irreducible, then this space is 1-
dimensional. Hence for irreducible representations the real and quaternionic
case are exclusive. This proves part of the following result (see [15, Chapter
11.6]).
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THEOREM 7.13. If H is an irreducible unitary G-representation, then it
is either of real, complex or quaternionic type.

We now specialize to the spin representations. The canonical bilinear
form on spinor modules S can be viewed as scalar-valued, after choice of a
trivialization of the canonical line K.

PROPOSITION 7.14. Let V be a Euclidean vector space of even dimension
n = 2m, and S a unitary spinor module over CI(V'). Then the Hermitian
metric on S and the canonical bilinear form are compatible.

PRrROOF. We work in the model V€ = F* @ F, S = AF*. Let f1,..., f™
be a basis of F'*, orthonormal relative to the Hermitian inner product. Then
the f! for subsets I C {1,...,m} define an orthonormal basis of AF*. For
any subset I let I¢ be the complementary subset. Use f1 A --- A f™ to
trivialize det(F™), and define signs e; = +1 by

(UOTAE =ep frA-on ™

Thus (f!, fI°)s = €;. Notice that e; = €re in the symmetric case and
€7 = —¢€gc in the skew-symmetric case. Define C by

(', fh)s = (Cfh, 1)
Then Cf! = e;f’e. We read off that C? = I in the symmetric case and
C? = —I in the skew-symmetric case. O

THEOREM 7.15. The types of the spin representations of Spin(n) are as
follows.

n=0 mod8: Aff real type,
n=17 mod8: A, real type,
n=2,6 mod8: Af complex type,
n=3,5 mod8: A, quaternionic type,
n=4 mod 8 : Ai quaternionic type.

Ifn=2,6 mod 8, one has A, = (A})*.

Proor. We consider various subcases.

Case la: n = 2m with m even. The canonical bilinear form (-,-)g is still
non-degenerate on the even and odd part of the spinor module;
hence it defines a real structure if m = 0 mod 4 and a quaternionic
structure for m =2 mod 4.

Case 1b: n = 2m with m odd. Then (-,-)s defines a non-degenerate pairing
between SO = A} and S} = A;. Hence AF 2 AT = (AF)* so
that At are of complex type.

Case 2a: n = 2m — 1 is odd, with m even. Recall that A, = SY_ ;. The
restriction of (-, -)s gives the desired non-degenerate symmetric (if
m =0 mod 4) or skew-symmetric (if m = 2 mod 4) bilinear form.
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Case 2b: n = 2m — 1 with m is odd. Here the restriction of (-,-)s to 52+1 is
zero. We instead use the form

(0,9) = (¢, 0(ent1)¥)s = (0(ent1)9,¥)s,

for ¢,1 € Agy—1 = Agy,. This is no longer Spin(n + 1)-invariant,
but is still Spin(n)-invariant. Since

(¥, ) = (0(ens1)¥, )s
= (—=1)™mV2(6, p(ent1)v)s
= (=)D (g gy,

we find that the bilinear form is symmetric for m =1 mod 4 and
skew-symmetric for m =3 mod 4.

O

7.6. Applications to compact Lie groups. Theorem 7.15 has sev-
eralimportant Lie-theoretic implications. Spin(3). The spin representa-
tion As has dimension 2, and after choice of basis defines a homomorphism
Spin(3) — U(2). Since Spin(3) is semi-simple, the image lies in SU(2), and
by dimension count the resulting map Spin(3) — SU(2) must an isomor-
phism. Since Aj is of quaternionic type, one similarly has a homomorphism
Spin(3) — Aut(H) = Sp(1), which is an isomorphism by dimension count.
That is, we recover Spin(3) = SU(2) = Sp(1).

Spin(4). The two half-spin representations Aff are both 2-dimensional. Ar-
guing as for n = 3, we see that the representation on AI ® A, defines an
isomorphism Spin(4) — SU(2) x SU(2).

Spin(5). Aj is a 4-dimensional representation of quaternionic type. After
choice of an orthonormal quaternionic basis, this gives a homomorphism to
Sp(2) = Aut(H?), which by dimension count must be an isomorphism. This
realizes the isomorphism

Spin(5) = Sp(2).

In particular, we see that Spin(5) acts transitively on the unit sphere S7 C
As = C*4, since Sp(2) acts transitively on the quaternions of unit norm. The
stabilizer of the base point (0,1) € H? is Sp(1) = SU(2) (embedded in Sp(2)
as the upper left block). We hence see that

S7 = Spin(5)/ SU(2).

This checks with dimensions, since dim Spin(5) = 10, while SU(2) has di-
mension 3.
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Spin(6). The half-spin representations Agt are 4-dimensional, and define
homomorphisms Spin(6) — U(4). Since Spin(6) is semi-simple, this homo-
morphism must take values in SU(4), realizing the isomorphism

Spin(6) = SU(4).

In particular Spin(6) acts transitively on S7 C AF =~ Ay, extending the
action of Spin(5), with stabilizers SU(3).

Spin(7). The 8-dimensional spin representation Ay is of real type, hence it
can be regarded as the complexification of an 8-dimensional real represen-
tation A¥ = R8. Restricting to Spin(6), we have A7 = A ® A;. Under
the symmetric bilinear form on Az, both Ag[ are Lagrangian. ' This im-
plies AF = Aét as real Spin(6) C Spin(7)-representations. Since Spin(6)
acts transitively on the unit sphere S7 C Ag, this shows that Spin(7) acts
transitively on the unit sphere S7 C A]%g. Let H be the isotropy at some
given base point on S7. It is a compact Lie group of dimension

dim H = dim Spin(7) — dim §7 = 21 — 7 = 14.

More information is obtained using some homotopy theory. For a com-
pact, simple simply connected simple Lie group G one knows that 71(G) =
mo(G) = 0, while m3(G) = Z. By the long exact sequence of homotopy
groups of a fibration,

coo = 1 (ST) = me(H) — mp(Spin(7)) = mp(ST) = -,

and using that m,(S7) = 0 for 1 < k < 7 (Hurewicz’ theorem), we find
that m(H) = m(H) = 0 and m3(H) = Z. It follows that H is simply
connected and simple (otherwise m3(H) would have more summands). But
in dimension 14 there is a unique such group: the exceptional Lie group Gs.
This proves the following remarkable result.

THEOREM 7.16. There is a transitive action of Spin(7) on S7. The sta-
bilizer subgroups for this action are isomorphic to the exceptional Lie group
Go. That is,

ST = Spin(7)/Gs.

We remark that one can also directly identify the root system for H,
avoiding the use of algebraic topology or appealing to the classification of
Lie groups. This is carried out in Adams’ book [1, Chapter 5.

Spin(8). The triality principle from Section 6 specializes to give a degree
3 automorphism j of the group Spin(8,C), along with a degree 3 automor-
phism J of C®® Ag @ Ag interchanging the three summands, such that the

'In more detail, recall that the bilinear form on A7 22 S is CI(7) = CI°(8)-invariant.
Restricting to CI(6) C CI(7), we obtain a Cl(6)-invariant bilinear form on Af ® A5 = S,
which must agree with the canonical bilinear form up to scalar multiple. But the latter
vanishes on the even and odd part of Sg.
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induced maps J: Ag — C8 etc. are equivariant relative to the automor-
phism j. Since Aét are of real type, one may hope for J to preserve the real
subspace R® @ A;’R ® Ag’R, and for j to preserve Spin(8). This is accom-
plished by taking the vectors n, ¢ in the construction of J,j (see Section 6)
to lie in R® and A;’R, respectively. The trilinear form on C® & Ag DAy (cf.
(45)) restricts to the real part, and can be used [17, 22] to define on R® an
octonion multiplication, R® = Q. The exceptional group G is now realized
as the automorphism group Aut(Q) of the octonions. A beautiful survey of
this theory is given in Baez’ article [9].

The other exceptional groups Eg, E7, Eg, F4 are related to spin groups as
well. For example, F; contains a copy of Spin(9), and the action of Spin(9)
on f4/0(9) is isomorphic to the (real) spin representation A§. In a similar
fashion, Fg contains a copy of Spin(16)/Zy (where Zs is generated by the chi-
rality element I'1), and the action of Spin(16)/Zs on the quotient eg/0(16)
is isomorphic to the (real) spin representation of Spin(16) on A;%.’R. (This
checks with dimensions: Fyg is 248-dimensional, Spin(16) is 120-dimensional,
and AIFG’R is 27 = 128-dimensional.) Proofs, and a wealth of related results,
can be found in Adams’ book [1].
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CHAPTER 4

Covariant and contravariant spinors

Suppose V is a quadratic vector space. In §2, Section 2.11 we defined
amap A: o(V) — A%(V), which is a Lie algebra homomorphism relative to
the Poisson bracket on A(V'), and a map v = go A: o(V) — CI(V), which
is a Lie algebra homomorphism relative to the Clifford commutator. One of
the problems addressed in this chapter is to give explicit formulas for the
Clifford exponential exp(y(4)) € Cl(V). We will compute its image under
the symbol map, and express its relation to the exterior algebra exponential
exp(A(A)). These questions will be studied using the spin representation
for W = V* @ V, with bilinear form given by the pairing. The shift in
perspective is reflected by a mild change of notation: Rather than starting
with a split bilinear form on V' and using a decomposition of V' = F*@® F into
Lagrangian subspaces F, F' = F* we now consider V itself as a Lagrangian
subspace of W =V* @ V.

1. Pull-backs and push-forwards of spinors

Let V be any vector space, and let W = V* ® V carry as usual the
bilinear form

(48) By ((p1,01), (2, v2)) = 5((p1, v2) + (p2, v1))-
We will occasionally use a basis ey, ..., ey, of V, with dual basis froofm
of V*. Thus By (e;, f7) = 67, and the Clifford relations in CI(W) read, in

terms of super commutators,
[F5 7] =0, [ei, 7] =6], leiej] =0.

We define the standard or contravariant spinor module to be A(V*), with
generators u € V* acting by exterior multiplication and v € V acting by
contraction. We will also consider the dual or covariant spinor module A(V'),
with generators v € V' acting by exterior multiplication and p € V* acting
by contraction. Recall (cf. §3.4) that there is a canonical isomorphism of
Clifford modules,

AV 2 AV) @ det(V*),

defined by contraction. The choice of a generator I'y € det(V*) gives an
isomorphism, called the ‘star operator’ for the volume form I",

s, A(V) = AVF), x = t(x)Th.
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Thus
7, 0 €(v) = t(v) o*p,,
*T, © L(M) = E(:u) O *Tp

In 7?7, we saw that the most general contravariant pure spinor is of the form

(49) d) = eXp(—CU)H,

where w € A2V* is a 2-form, and x € det(ann(N))* a volume form on
V/N, for some subspace N C V. Given &, the form ¢ only depends on the
restriction wy € A?(N*) of w to N.

By reversing the roles of V,V*, the most general covariant spinor is of
the form

(50) x = exp(~m)v
where 7 € A%2(V) and v € det(S)*, for some subspace S C V. Given v, the

spinor x only depends on the image 75 € A%(V/S) of m. The corresponding
Lagrangian subspace is

(51) F(e7™v) ={(p,v) e V'@ V| p€ann(S), n(p,-) —ve S}

Note that S = F(e™"v) NV, while ann(S) is characterized as projection of
F(e7™v) to V*.

For a linear map ®: V; — V2 we denote by @, = A(®): AV] — AVh the
‘push-forward’ map, and by ®* = A(®*): AVS — AVJ" the ‘pull-back’ map.

PROPOSITION 1.1 (Push-forwards). Suppose ®: Vi — V4 is a linear map,
and x € A\Vq is a pure spinor. Then the following are equivalent:
(1) ®.x #0,
(2) ker(®)N{vi| v1 A x =0} = {0},
(3) ®.x is a pure spinor.
In this case, the Lagrangian subspace defined by the pure spinor ®,x is

F(®@ax) = {(p2, ®av1)] (272, 01) € F(x)}

PROOF. Write x = e "v as in (50). Since v is a generator of det(S), the
subspace S C V; may characterized in terms as the set of all v; € Vi with
vy Av =0, that is v; A x = 0. Thus ®,x # 0 < v #0 & ker(P)N S =
{0}. Furthermore, in this case ®,v is a generator of det(®(.5)), and hence
O,y = e ®"d,v is a pure spinor.

We have (ug, v2) € F(®,x) if and only if o € ann(®(S)) and Pum(pz, -)—
vy € ®(5). The first condition means ®*uy € ann(S). Choose wy € Vi with
(P*pg,w1) € F(x). (Note that w is unique modulo F(x) NV; = S.) Then
(D pg, ) —wy € S, ie. Pum(ua,:) — ®(wy) € ®(5). The second condi-
tion now shows that vy — ®(w1) = ®(uy) for a unique element u; € S.
Putting v1 = w1 + u1, we obtain v9 = ®(v1), giving the desired description
of F(®.x). O

By a similar argument, one shows:
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PROPOSITION 1.2 (Pull-backs). Suppose ®: Vi — Va is a linear map,
and ¢ € ANV is a pure spinor. Then the following are equivalent:

(1) ®*¢ # 0,
(2) ker(®*) N{p2 € V5| p2 A ¢ =0} = {0},
(3) ®*¢ is a pure spinor.

In this case, the Lagrangian subspace defined by ®*¢ is

F(®%¢) = {(®"p2,v1)| (2, Pxv1) € F(¢)}.

The two Propositions suggest notions of push-forwards and pull-backs
of Lagrangian subspaces. Write (u1,v1) ~¢ (u2,v2) if vo = ®(v1) and
w1 = ®*(p2). If E C Vi* @ V) is Lagrangian we define the forward image of
E

O E = {(p2,v2) € Vo' @ Va| I(p1,01) € E: (p1,v1) ~a (p2,v2)}

It F C V5 @ Vs is Lagrangian we define the backward image of F'

O'F = {(u1,v1) € Vi & Vi| (p2,va) € F: (1, v1) ~a (2, v2)}-

The two Propositions above show that ®E is Lagrangian, provided ker(®)N
(ENVy) = {0}, and that ®'F is Lagrangian provided ker(®*) N (FNV}*) =
{0}. In fact, &, FE and ®'F are Lagrangian even without these transversality
assumptions. However, assuming that K = R or C, the forward image ® F
(resp. backward image ®'F) depends continuously on E (resp. on F) only
on the open subset of Lag(V* @ V) where the transversality condition is
satisfied.

PROPOSITION 1.3. Let ®: V3 — V5 be a linear map. Suppose E1 is a
Lagrangian subspace of Vi* ® Vi, and Fy is a Lagrangian subspace of Vo @ V.
Let By = ®E, be the forward image of E1 and Fy = ®'F, the backward
image of Fo. Then

ElﬂFlz{O} & EQQFQZ{O}.

Furthermore, in this case the transversality conditions are automatic, that

is ker(®) N (E1 NVy) = {0} and ker(®*) N (Fo N V5) = {0}.

PRrROOF. Consider the covariant spinor module over Cl(V}* @ V;) and
the contravariant one over Cl(Vy" @ Va). Let x € AV be a pure spinor
defining Fj, and ¢ € AVS" a pure spinor defining Fs. Then (¢, ®.x) =
(®*p, x), hence one pairing vanishes if and only if the other pairing vanishes.
But by Theorem 4.7 (or rather its proof), the non-vanishing of the pairing
is equivalent to transversality of the corresponding Lagrangian subspaces.
Furthermore, the non-vanishing implies that ®,x, ®*¢ are both non-zero,
which by Propositions 1.1 and 1.2 gives the transversality conditions. O

87



2. FACTORIZATIONS

2. Factorizations

2.1. The Lie algebra o(V* & V). Let W = V* @ V| and recall the
isomorphism (cf. §2, Section 2.11)

A o(W) — A2(W),

given in terms of the Poisson bracket on A(W) by S(w) = {A(S),w}. We
are interested in the action of y(5) = ¢(A(S)) € CI(W) in the contravariant
spinor module A(V*). To compute this action, decompose

AN(W) = N2(V) @ A2(VF) @ (VFAT).

In o(W), the three summands correspond to:

1. The commutative Lie algebra A%(V) of skew-adjoint maps Ey: V* —

V, acting as (u,v) — (0, E1(p)). Equivalently, this is the subalge-
bra of o(W) fixing V' pointwise. We have

ME) =35> Ei(f) Aei.

The element v(E;) € A%(V) is given by the same formula (viewing
A(V') as a subalgebra of C1(W)), and its action in the spinor module
is by contraction with A\(E}).

. The commutative Lie algebra A%(V*) of skew-adjoint maps Ea: V —

V*, acting as (p,v) — (E2(v),0). Equivalently, this is the subalge-
bra of o(W) fixing V* pointwise. We have

)\(EQ) = %ZEQ(GZ) AN fZ

The element v(Es) € A?(V*) is given by the same formula (view-
ing A(V*) as a subalgebra of C1(W)), and its action in the spinor
module is by exterior multiplication by A(Es).

. The Lie algebra gl(V'), where A: V' — V acts as (i, v) — (—A*u, Av).

Equivalently, this is the subalgebra of o(W) preserving the direct
sum decomposition V* @ V. We have

AA) == fI A Ales).
This quantizes to

1(4) = a(M(4)) = —3 ‘ (f'Alei) — Alen) ')
- ZfiA(ei) + S tr(A)

where we used Y. (f!, A(e;)) = tr(A). Letting La denote the
canonical action of gl(V') on A(V*), given as the derivation exten-
sions of the action as —A* on V*, we find that v(A) acts as

o(v(A)) = La+ 5 tr(A).
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That is, the action of gl(V') on the spinor module A(V*) differs from
the ‘standard’ action by the 1-dimensional character A — 1 tr(A).

Writing elements of W = V* & V' as column vectors, we see that
o(W) = A2(V*) @ gl(V) & A*(V)

consists of block matrices of the form

[ A" By
s=(n %)
and our discussion shows

0(1(8)) = t(A(E1)) + e(A(B2)) + La + 5 tr(A).
2.2. The group SO(V*@ V). Corresponding to the three Lie subalge-
bras of o(WV) there are three subgroups of SO(W):
1. A%(V*), given as matrices in block form

(0 7)

where Ey: V — V* is a skew-adjoint linear map.
2. A2(V), given as matrices in block form

(5 1)

where F1: V* — V is a skew-adjoint linear map.
3. GL(V), embedded as matrices in block form

( (Q;)* g)

where Q: V — V is invertible.
If K = R, C, these are Lie subgroups of SO(W), with respective Lie subal-
gebras A2(V*), gl(V), A2(V) of o(W). Consider now arbitrary orthogonal
transformations. An endomorphism g € End(W), written in block form

(53) g=<‘; Z)

is orthogonal if and only if
a*c+ca=0, b'd+db=0, a"d+c'b=1.

PROPOSITION 2.1 (Factorization formulas).

(1) The map A2(V) x GL(V) x A2(V*) — SO(W) taking (91,92, 93)
to the product g = g19293 is injective. Its image is the set of all
orthogonal transformations (53) for which the block a € End(V™)
is invertible.

(2) The map N2(V*) x GL(V) x A2(V) — SO(W) taking (91, go, g3) to
g19293 s injective. Its image is the set of all orthogonal transfor-
mations (53) for which the block d € End(V') is invertible.
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In particular, the orthogonal transformations (53) for which the block a
or the block d are invertible, are contained in SO(V* @& V).

PRrROOF. For (1) we want to write (53) as a product

(£ )% 0) (0 7)=(alh 0% e )

If a is invertible, we can solve for E7, Fs, @ in terms of the blocks a, b, c:
Q=(a N EBir=ca!, B =a"'b
(Note that d = (a=1)*(I — ¢*b) if a is invertible.) The proof of (2) is similar.
U

2.3. The group Spin(V* & V). The factorizations of SO(W) give rise
to factorizations of the special Clifford group ST (W) and of the spin group
Spin(W).

(1) The inclusion of A2(V') < SO(W) lifts to an inclusion as a subgroup
of Spin(W) € ST(W), by the map

< }_51 ? > = By = exp(A(Ey))

where the right hand side is an element of A(V*) C CI(W). Indeed,
for all (u,v) € W one has
El(:“’v U)El_l = ([,L,U - L/A)‘(El))

showing that F; lies in ST(W) and that it lifts the orthogonal
transformation defined by E;. Since N(E;) = 1 it is an element of
the spin group. The action of this factor in the spinor module is

o(E)g = (M),
(2) Similarly, the group homomorphism A?(V*) < SO(W) lifts to an
inclusion into Spin(W) C ST (W) by the map

( (I) f}z > — By := exp(\(E2))

where the right hand side is viewed as an element of A(V*) C
CI(W). The action of this factor in the spinor module is

o(B2)p = M) A g,

(3) The inclusion GL(V) € SO(W) does not have a natural lift. Let
GLp(V) € ST(W) denote the pre-image of GL(V), so that there is
an exact sequence

1— KX — GLp(V) = GL(V) — 1.

If Q € GLp(V) is a lift of Q@ € GL(V), then its action in the spinor
module reads,

0(Q)¢ = x(Q) Q-9
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Here Q).¢ denote the ‘standard’ action of GL(V) on AV*, given
by the extension of @ — (Q~!)* € End(V*) to an algebra ho-
momorphism of A(V*), while x: GLp(V) — K* is the restriction
of the character x: ST'(W)y — K* from Section 5. Recall its
property x(Q)? = N(Q) det(Q). If Q can be normalized to lie in
Spin(W) C T'(W)y, we have

X(Q) = det'*(Q)
where the sign of the square root depends on the choice of lift.

EXAMPLE 2.2. Suppose V is 1-dimensional, with generator e. Let f € V'*
be the dual generator so that By (e, f) = % The spinor module S = AV*
has basis {1, f}. Given r € K* = GL(V), the possible lifts of

( Tal ] ) € SO(W)

are given by,

=t(1—(1—r"")fe) € ST(W)

where t € K*. One checks N(Q ) = t2r~1. If r admits a square root (e.g. if
K = C), one obtains two lifts Q € Spln(W) (one for each choice of square
root ¢t = 11/ 2). The action of Q in the spin representation is given by

oQ)L=t, o@Qf=tr"'f
which is consistent with the formula given above.

REMARK 2.3. One can also consider the spin representation of ST'(W)
on the dual spinor module SV = A(V). Here the the formulas for the action
of the three factors read

QB = B n, o(Ba)p = BNy, (@) = U9

det Q)

Qu V.

(Due to the factor det(Q)™?, the action of Q on the pure spinor line Iy =
det(V) is multiplication by x(Q).)

3. The quantization map revisited

Up to this point, we discussed spinors only for quadratic vector spaces
whose bilinear form B is split. By the following construction, the spinor
module may be used for Clifford algebras of arbitrary symmetric bilinear
forms, even degenerate ones. In particular, we can interpret the symbol
map in terms of the spinor module.
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3.1. The symbol map in terms of the spinor module. Suppose
V' is a vector space with a symmetric bilinear form, B. Then the map

Ve W =V*aV, v B'(v) dv

where W carries the bilinear form By given by (48), is a partial isometry:

By (ji(v1), 4 (v2)) = 5(B’(v1),v2) + 3(B"(va),v1) = B(vy,v2).
Hence, it extends to an injective algebra homomorphism,
j: CI(V) — CI(W).
Using the covariant spinor module, CI(W) is identified with End(A(V)).

PROPOSITION 3.1. The composition
Cl(V) L CUW) -5 End(A(V))

is equal to the standard representation of CL(V') on A(V'). In particular, the
symbol map can be written in terms of the covariant spinor module as

o(x) = o(j(x)) 1

PROOF. The elements j(v) = B’(v) @ v act on A(V) as e(v) + 1(B*(v)),
as required. O

If B is non-degenerate, we may interpret the symbol map also in terms
of the contravariant spinor module A(V*). The Clifford action of j(v) is
now «(v) + e(B’(v)), and we again have o(z) = p(j(x)).1. In fact, the
isomorphism V* 2 V given by B defines an isomorphism of the two spinor
modules.

3.2. The symbol of elements in the spin group. We will assume
that the bilinear form B on V is non-degenerate, and denote by Bf: V* — V
the inverse of B?. Let V'~ denote the vector space V with bilinear form —B.
Then the map

k: VeV =W, vi ® vy +—>Bb(vl +v2) @ (v1 — v2)
is an isomorphism of quadratic vector spaces. Indeed,
Qy (B’(v1 + v2) @ (v1 — v)) = B(v1 + v2,01 — v2) = Qp(v1) — Qp(v2).
The inverse map reads

Bi(u) +v  B(p)—v

F(pdv) = =g —— @ =

In matrix form,

(B B i1 BT
I —-I)° 2\ Bf —TI
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Conjugation by k gives a group isomorphism between O(V @&V ™) and O(W).
In particular, O(V) C O(V @& V™) acts by orthogonal transformations on

W. We find, for all C' € O(V),
C 0 o B (C+1)B! B (C-1I)
(54) HO(O I>°"‘ = ( (C —I)Bt C+1I '

If C'+1 is invertible, we may apply our factorization formula to this expres-
sion. We obtain

(6 7) =00 )N 1) (e 1)

where

w\'—‘

c—-1 c—-1I C+1
B, Ey=DB -T2
c+1°7 2 “C+ I 2
Note that since the right hand side of this product is in SO(W), so is the
left hand side. We hence see that

C € O(V),det(C+ 1) #0= C € SO(V)

for any field K of characteristic 0. (If K = R or C, this fact easily follows
from eigenvalue considerations.) We will now consider lifts of C' € SO(V)
to the Clifford group ST'(V'), and consider the action of such a lift on the
spinor module. This formula will involve the elements \(E7), A(E2). For
any X € o(V), the element A\(X o B¥) € A2(V) C A2(W), defined using By,
is related to the element A\(X) € A%(V), defined using B, by
AMX o BY) = 2A(X),
as follows from the explicit formula (52). Similarly, we have
MB’ o X) = 2B (A\(X)).

Alift C € ST'(V') to the spin group determines a lift

=

T =+ ¢ GLp(V) € ST(W).

From the known action of the factors in the spinor module, we therefore
deduce, using Proposition 3.1:

THEOREM 3.2. Let C € ST(V) be a lift of C € SO(V). Then the action
of C' on the Clifford module AV given by the formula,

~ —— Cc— C—
0(0) = x(GF) () o (G41) o oD

where Ty, = (T~ ) denotes the action as an algebra homomorphism of
ANV*) = A(V). If C € Spin(V), the scalar factor may be written
(55) W(OFT) = det!/2(C4)

where the sign of the square root depends on the choice of lift.

Applying this formula to 1 € A(V), and using that ¢(C) = o(C).1 we
find:
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PROPOSITION 3.3. Suppose C e ST(V) c CV) is a lift of C € SO(V).
Then the symbol o(C) is given by the formula

- — c-1

7(C) = x(Gh) D)

~ . ' 1/2(C+I
If C € Spin(V) the scalar the scalar factor may be written det'/ (CT+)
Proposition 3.3 has the following immediate consequence:

COROLLARY 3.4. Suppose K = R (resp. K = C). The pull-back of the
function
SO(V) = K, C > det(H)
to Spin(V') has a unique smooth (resp. holomorphic) square root, equal to 1
at the group unit.

PrOOF. The form degree 0 part a(é’)[o] of the symbol of C' € Spin(V)
provides such a square root. ([l

The element

Yo =0o(C) e A(V7)
is a pure spinor, since it is obtained from the pure spinor 1 € A(V*) by
the action of an element of the spin group. The Lagrangian subspace of
W defined by 1 € A(V*) is V, hence the Lagrangian subspace defined by
Yo = o(C).1 is the image of V under (ko (C @ I)ox~')V. That is,

Fo={((C—Iw, (C+Iw)eW, veV}

A Lagrangian subspace transverse to Fp is given as the image of V* under
ko (C@I)ok™1t that is

Ec={(C+I)v, (C—1)v)eW, veV}.

Any volume element I'y € det(V*) is a pure spinor defining V*. Hence a
pure spinor defining F¢ is

pc = o(C)TA.
Note that (¢c,¥c) = I'a is non-zero, as required by Theorem 4.7.

3.3. Another factorization. Other types of factorizations of the ma-
trix (54) defined by C lead to different formulas for symbols. We will use
the following expression, in which the block-diagonal part is moved all the
way to the right:

PROPOSITION 3.5. Suppose C € SO(V) with det(C — I) # 0, and let
D:V — V* be skew-adjoint and invertible. Then
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where
C+1
Ey=—-B'-D!
'=c-T1 ’
1
Ey =D~ (Bbc 40 D~ —I),
I
T = DleC

PROOF. The matrix product on the left hand side of the desired equality
is given by (54), while the right hand side is, by direct computation,

o (I + DEy)(T~1)* b
r.hs. = < (B1 + E1DEy + E2)(T~Y* (I + DEY)T >

The two expressions coincide if and only if E1, Fs, T are as stated in the
Proposition. For instance, a comparison of the upper right corners gives
T = Dil%. Similarly, one finds F1, Fo by comparing the upper left and
lower right corners. (One may verify that, with the resulting choices of
Eq, E5, T, the lower left corners match as well.) U

Using the known action of the factors in the spinor module (cf. Section
2.3), we obtain:

COROLLARY 3.6. Let C € ST(V) be a lift of C € SO(V'). For any choice
of D as above, the action of C' on ¢ € AV is given by the formula,

o(C)y = X(T) o(XPV) M)y (A)) T

Here T is the lift of T determined by the lift C. In particular, taking ¥ =1
we obtain the following formula for the symbol of elements in the Clifford
group:
o(C) = x(T) L(e’\(El)) D),
The choice D = B° ngI
(Proposition 3.3) for o(C). In the following Section, we will instead consider

the case C' = exp(A) with the choice D = B” A/2.

gives F1 = 0, and we recover our first formula

3.4. The symbol of elements exp(y(A)). Suppose K =R or C, and

consider exponentials C' = exp(A) for A € o(V'). Thus
det(%) = det(cosh(%)), g—Jj = tanh( )

By Corollary 3.4 we obtain a smooth square root of the function
o(V) — C, A det(cosh(A/2)),
equal to 1 at A = 0. There is a distinguished lift
¢ = exp(y(A)) € Spin(V),
and the formula from Proposition 3.3 now reads:
(56) o(e7™) = det!/?(cosh(A/2)) e2A(tanh(4/2)),
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EXAMPLE 3.7. Let us verify that (56) matches with the computation
from Example 1.11, in case V = C?, \(4) = —0/2 e; A e5. We had found
that

(57) exp(y(A)) = cos(0/2) — sin(6/2)e;es.

On the other hand, A = 0.J where Je; = ey, Jea = —eq, hence exp(A/2) =
cos(0/2) +sin(0/2)J. It follows that

cosh(A/2) = cos(6/2) id,
tanh(A/2) = tan(6/2)J.
This yields A(tanh(A4/2)) = —1 tan(6/2)e; A ez and
det'/?(cosh(A/2)) = cos(0/2), *tanh(A/2) — 1 _ tan(6/2)e; A es.
Their product is indeed the symbol of (57).

3.5. Clifford exponentials versus exterior algebra exponentials.
We first assume K = C. Let A € o(V), and consider the formula from
Section 3.3 for C =exp A, D = B’o é. We obtain

Ey=2f(A)o B, E;=2B"og(4), T=j"A4)
with the following functions of z € C,

1 z, 1 _sinh(z) =2z  p, . € -1
f(Z) - §C0th(§)_;7 g(z)_Tu J (Z)_ P
For later use we also define
. sinh(z/2) . o 1—e7*
jz) = — R ()= ——.

Note that g, 5, i, j are entire holomorphic function on C, while f is mero-
morphic with poles at 2m\/—1k with k € Z — {0}. Since f, g are odd func-
tions, f(A),g(A) are again in o(V), while j(A)T = j(A) and j4(A)T =
§®(A). Furthermore, j7(A), j%(A),j(A) are invertible if and only if A has
no eigenvalues of the form 27w/—1k with k € Z—{0}. The resulting formula
for the symbol gives:

THEOREM 3.8. Suppose K =R or C. For all A € o(V') with the property
that A has no eigenvalue 2m\/—1k with k # 0, the symbol of exp(y(4)) €
Cl(V) is given by the formula,

o(exp(7(A4)) = 1(S(A)) exp(A(A)).
where S: o(V) — A(V) is the map
S(A) = det'(j(A)) exp (4A(f(A))).
Once again, while Proposition 3.5 requires that A is invertible (which

never happens if dimV is odd), the resulting formula holds without this
assumption. In case A is invertible we can directly write

S(A) = det!/2(ShA/2)) (5 eoth(3) )
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As it stands, S: o(V) — A(V) is a meromorphic function, holomorphic
on the set of A that do not have eigenvalues of the form 27w/ —1k with
k € Z — {0}. We will see below that it is in fact holomorphic everywhere.

ExAaMPLE 3.9. We continue the calculations from Example 3.7, where

exp(y(A)) = cos(0/2) — sin(6/2)eqes.

We have Sing(/’z/ 2 - Siné%mf , hence

det1/2<smz(/é/2)> _ sin0(/92/2)'

On the other hand,

1 A 1 1

0
f(A) = §coth§ — A= —(5 COt(i) — %)J,
SO
IA(f(A)) = (cot(g) _ %)el Aes.
Hence

S(A) = Sine(/af) (1+ (cot(g) _ %)61 Nes).

Note that S(A) has no poles. Contracting with exp(A(4)) = 1 — gel A e
we find,

L(S(A))exp(A(A)) = cos(g) — Sin(g)el N ey = o(exp(v(A))),

as desired.

3.6. The symbol of elements exp(y(A4) — >, ¢;7%). Theorem 3.8 has
a useful generalization, allowing linear terms. Let P be a vector space of odd
“parameters”. Let e; be a basis of V, and consider expressions e;@7% € VP
with 7¢ € P. Note that we can view that parameters 7¢ as the components
7(e*) of a linear map 7: V — P. The following Theorem shows that the
same element S(A) € A(V) as before relates the exponentials of elements

AA) =Y eim € NV) @ A(P),
Y(A) =D e € CUV) @ A(P).

Quite remarkably, it is not necessary to introduce a 7-dependence into the
definition of S(A).

THEOREM 3.10. Let K=1R or C. With S(A) as above,
OWEer — g (u(S(A)N R,

97



3. THE QUANTIZATION MAP REVISITED

ProOF. Think of Cl(V) @ A(P) = CI(V @ P) as the Clifford algebra
for the degenerate bilinear form B ¢ 0. Pick an arbitrary non-degenerate
symmetric bilinear form Bp on P, and consider the bilinear form B @ eBp
on V @ P. Then A\(A) — 3, ;" = A\(A,) with

% A —2erT A 0
A€:<27’ 0 >:<2T 0>+O(E)’

where O(e) denotes a term that goes to 0 for ¢ — 0. By induction, it follows
that the powers of A, have the form

=y m o)+ 0t
Hence f(A.) € End(V @ P) is given by
iy ( f(A) 0
)= (150§ ) o,

with @ = 7f(A)A~L. The skew-adjoint map V @& P — V* @ P* defined by
A f(Ae)) € A2(V* @ P*) is the composition

( By g, ) edtaa= (B I@ 0 og.

A(f(Ae)) = A(f(4)) + O(e).

This shows

Similarly, ~
det(j(Ac) = det(j(A)) + O(e),

since only the block diagonal term contributes. The Theorem now follows
by letting € — 0 in our general formula,

exp(y(Ae)) = «(S(Ae)) exp(A(Ae)). O

ExaMpPLE 3.11. In the 2-dimensional setting of Examples 3.7 and 3.9,
consider exponentials of the form

0o 2
i i 1™ 6 .
WX e _ p—ferea=Y et _ E : ( 3 (56162+ E eﬂ'l)m.

m:

Using that ejes anti-commutes with Zl e;7', the sum becomes
2

> (1?7” (g)m(6162)m + Fl)m“”‘(z eiTi)(gelez)m_l

m=0 m=1 i=1

where a,, = Z;-n:_ol(—l)j = 1(1+(-=1)™) is 1 if m is odd, 0 otherwise, while

by = Yoo ) = (=)™ m+ %(1 —(=1)™).

3,3’ 20,5+j'<m—2
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With (eje2)?* = (—=1)F, the result can as before be expressed in terms of
trigonometric functions:

ATt = cos(0/2) — sin(0/2)ereq — sin(0/2) Z T

T2
sin(0/2)  cos(0/2) s1n(9/2)
+ ( (0/2)2 - 0/2 )7’17’2— 9/2 €1€2T172.

It is straightforward to verify that this formula coincides with g o t(S(A))
applied to
2 ; 0 2 ,
AD=L i en Tt — g€/ e = z_; e +e1 Aea AT ATy

3.7. The function A — S(A). Until now, the function S was defined
on the set of A € o(V') such that A has no non-zero eigenvalues in 27w/ —1Z.
We can now show that the function S extends to an analyic function on all
of o(V'). In particular, the formulas established above hold on all of o(V).

THEOREM 3.12. Let K = R or C. The function A — S(A) extends to
an analytic function o(V)) — A(V). In particular, its degree zero part

A det!/?(j(A)) = det!/? (S22
is a well-defined analytic function o(V) — K.

PROOF. Let P, 7% be as in Theorem 3.10. We assume that the 7'1: are
a basis of the parameter space P (e.g. we may take P = V*, with 7" the
dual basis of e;). Then exp(A(A) — ), e;7') has a non-vanishing part of
top degree 2dim V. By the Lemma below, there exists an analytic function
S':o(V) — A2V @ P*) satisfying

US'(A)) exp(M(A) =Y eir’) = g Hexp(v(4) = Y eir)).
i i

By uniqueness, this function coincides with the function S(A) defined above.
(Thus, it actually takes values in A(V).) O

LEMMA 3.13. Let E be a vector space, x,1¥ € N(E), and suppose that the
top degree part Xjiop) € det(E) is non-zero. Then there is a unique solution
¢ € N(E™) of the equation

¥ =u(P)x-
If x, ¥ depend analytically on parameters, then so does the solution ¢.

PRrOOF. Fix a generator I'y € det(E*). Then the desired equation 1) =
t(¢)x is equivalent to

LW)La =@ A(x)DA.
Since X[dim ) 7 0, we have (¢(x)['a)[o] # 0, i.e. t(x)I's is invertible. Thus
¢ = (L()Ln) A (L(X)F/\)_1
99



4. VOLUME FORMS ON CONJUGACY CLASSES

This shows existence and uniqueness, and also implies the statements re-
garding dependence on parameters. O

4. Volume forms on conjugacy classes

As an application of some the techniques developed here, we will prove
the following fact:
the conjugacy classes of any connected, simply connected
semi-simple (real or complex) Lie group carry distinguished
volume forms.
In fact, it suffices to assume that the Lie algebra of G carries an invariant
non-degenerate symmetric bilinear form B - in the semi-simple case this can
be taken to be the Killing form. Also, the assumption that G is connected
and simply conected can be relaxed (see below).

We begin with a real or complex Lie group G, together with a G-invariant
symmetric bilinear form B on g. Let 0%, 6% ¢ Q'(G, g) be the left-, right-
invariant Maurer-Cartan forms. That is, if ¢&, ¢ € X(Q) are the left-, right-
invariant vector fields on G, equal to & at the group unit, then +(¢%)0F =
& = 1(£R)0F. For ¢ € g define two sections of the bundle T*G @ TG:

e(&) = B(OF + 07, ) @ (& — &),
f(&) = BOF — 07, O & (& + &),

PROPOSITION 4.1. The sections e(§), f(§) for & € g span transverse
Lagrangian sub-bundles E, F C T*G & TG, respectively. One has

(e(&1),e(82)) =0,  (f(&1), f(§2)) =0, (e(61), f(&2)) = 2B(&1,82).

ProoF. Use left trivalization of the tangent bundle to identify TG =
G x g and T*G = G x g*. The left trivialization takes B(6%, &), ¢ to
the constant sections g — B’(€), & and B(07,€),£R to the sections g —
B’(Ad(g~1)¢), Ad(g~1)é. Thus, in terms of left trivialization,

e(€)lg =B (1+Ad(g™))¢) & (1 — Ad(g™)9),

F©)lg = B*((1 = Ad(g71)&) @ (1 + Ad(g™1)¢).
Let TG denote TG with the opposite bilinear form, and define the bundle
map
K: TGEB@—) T*G@TG, V1 D vy — Bb<’l)1 +v2) D (’1)1 — ’Ug)

as in Section ?7. This is an isometry, and we observe that

(58) RH(e(€) = €@ Ad(g e RTHF(E) = €@ (= Ad(g™1)9).

That is, k= }(E)|, is the graph of the isometry Ad(g—!), while x~1(F)],
is the graph of the isometry — Ad(g~!). These are transverse Lagrangian
subspaces, hence so is their image under k. The formulas for the inner
products are immediate from (58). O
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The T'G-components of the sections e(§) € T'(T*G @ TG) are the gen-
erating vector fields &g = &€F — ¢ € X(G) for the conjugation action on G.
Suppose C C (G is a conjugacy class, i.e. an orbit of the conjugation action,
and define E¢ =TC @& T*C to be the span of the sections

ec(§) = EB(O" + 0%, @ &

where (¢: C — G is the inclusion. Then E¢ is isotropic (since (ec(£1),ec(§2)) =
(e(&1),e(&2))|e = 0). For dimension reasons, it is in fact Lagrangian. Since
the projection of F¢ to T'C is a bijection, Eg¢ is the graph of a 2-form —w¢
where
L(&e)we = —iZ»B(QL + 0%, €)

Explitly,

we(Selg, €elg) = B(Adg — Ady-1 €, €).
In terms of the contravariant spinor module AT*C over CI(T*C & TC), it
follows that E¢ is the Lagrangian sub-bundle spanned by the pure spinor
b = exp(—w) € Q(C).

By definition of E¢, we have El,, = (Tytc)hEcly for all g € C, in
the notation of Section 1. By Proposition 1.3, the Lagrangian sub-bundle
Fe C T*C@TC given by F¢l, = (Tgl,c)!F|L(g) is transverse to E¢. Suppose we
are given a pure spinor ¢ € {(G) defining F¢. Then the pull-back ¥¢ = 159
is a pure spinor defining Fr. By §3, Theorem 4.7, the transversality of
FEe, Fg is equivalent to the non-dgeneracy of the pairing between ¢¢ and
te. That is, (éc,c) = (exp(we) A 151 is a volume form on C.

We will give a construction of 1 using the spin representation. This will
require an additional assumption: We assume that we are given a lift

Ad: G — Pin(g)

of the adjoint action Ad: G — O(g). If G is connected and simply connected,
the lift is automatic.

Recall the description of F' given in the proof of Proposition 4.1, present-
ing F as the image of {(Ad(g)¢&, —¢)| € € g} C TC & TC under the isometry
k. The image of the anti-diagonal {(§, —¢)| £ € g} under k is T*G, which is
defined by the pure spinor 1 € I'(AT*G) = Q(G). Thus

by = 0(Ad(g)).1

is a pure spinor representing F'|,. By Proposition 3.1, this is just the symbol
of the element Ad(g) € Pin(g) C Cl(g):

¥y = o(Ad(g)).
Note that ¢ is invariant under the adjoint action of G on itself. To

summarize:

THEOREM 4.2 (Volume forms on conjugacy classes). [3, 52| Let G be a
Lie group, whose Lie algebra carries an invariant non-degenerate symmetric
bilinear form B. Assume that the adjoint action admits a lift G — Pin(g),
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and let ¢ € Q(G) be the resulting pure spinor. For any conjugacy class
C C G, let we be the 2-form defined above. Then the top degree part of the
wedge product

exp(we) A ey
defines an Ad(QG)-invariant volume form on C.

Proposition 3.3 (applied to C' = Ad(g)) gives an explicit formula for .
Left trivialization of T'G identifies the map g — )\(ﬁd JJ) € A%g* with a
2-form on G, defined over the subset of G where Ad, has no eigenvalue equal
to —1. In terms of Maurer-Cartan forms the 2—f0rm reads

1 Ad, -1 5L oL
_4B(Adg+19 0)

We obtain:
PROPOSITION 4.3. Over the set of g € G where Ad, has no eigenvalue
equal to —1, the pure spinor ¢ € Q(G) is given by the formula

(59) ¥ = det!/2(24H) exp(— 1 B(332 10, 01)).

Here the sign of the square root depends on the choice of lift Ad. If G
is connected, the set of g € G such that det(Ad, +1) = 0 is open and dense.
On the other hand, if det(Ady) = —1 so that Ad, € O(g) — SO(g), Ad,
always has —1 as an eigenvalue.

Let us make a few comments on the volume form on C.

REMARKS 4.4. (1) Theorem 4.2 shows in particular that, under the
given assumptions, all conjugacy classes in G have a natural orien-
tation. The simplest example of a non-orientable conjugacy class
of a non-simply connected group is C = RP(2) C SO(3) (the con-
jugacy class of rotations by 7).

(2) If G is connected, the map to Pin(g) necessarily takes values in
Spin(g), and hence the resulting form v is even. According to the
Theorem, the conjugacy classes in G must all be even-dimensional.
The simplest example of an odd-dimensional conjugacy class of a
disconnected Lie group is C = S' € O(2), the conjugacy class of
2-dimensional reflections.

(3) The adjoint action always lifts after passage to a double cover G,
if necessary. The volume forms on the conjugacy classes in G de-
termine in particular invariant measures, and these descend to the
conjugacy classes in G. Thus, given the invariant metric B on g ,
all conjugacy classes in G carry distinguished invariant measures.
Note that conjugacy classes in a general Lie group G need not ad-
mit invariant measures. An example is the group G generated by
translations and dilations of the real line R. The generic conju-
gacy classes are diffeomorphic to R with this action, and hence do
not carry invariant measures. In this case, g does not admit an
invariant metric.
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(4) If G is semi-simple, there is a distinguished B given by the Killing
form. Hence in that case the volume forms on the conjugacy classes
of G (assuming e.g. that G is simply connected) are completely
canonical.

(5) The volume forms on conjugacy classes are analogous to the Li-
ouville volume forms on coadjoint orbits @ C g*. The latter are
given by (exp wo)jtop), using the Kirillov-Kostant-Souriau symplec-
tic structure we.

For further developments of the theory outlined here, see [3].
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CHAPTER 5

Enveloping algebras

Enveloping algebras define a functor g — U(g) from the category of Lie
algebra to the category of associative unital algebras, in such a way that
representation of g on a vector space V are equivalent to an algebra repre-
sentation of U(g) on V. A fundamental result in the theory of enveloping
algebras is the Poincar’e-Birkhoff-Witt theorem, which (in one of its incarna-
tions) states that a natural ‘quantization map’ from the symmetric algebra
S(g) into U(g) is an isomorphism of vector spaces. One of the goals of this
chapter is to present a proof of this result, due to Petracci, which is similar
in spirit to the proof that the quantization map for Clifford algebras is an
isomorphism. Throughout this chapter, K denotes a field of characteristic
0. The vector spaces F and Lie algebras g considered in this Chapter may
be infinite-dimensional unless stated otherwise.

1. The universal enveloping algebra

1.1. Construction. For any Lie algebra g, one defines the universal
enveloping algebra U(g) = T(g)/Z as the quotient of the tensor algebra by
the two-sided ideal Z generated by elements of the form

E@(—CRE—[£<.

Equivalently, the universal enveloping algebra is generated by elements £ € g
subject to relations £¢ — (£ = [€,¢]. Since Z(g) is a filtered ideal in T'(g),
with ZNK = 0, it follows that U(g) is a filtered algebra. The construction
of the enveloping algebra U(g) from a Lie algebra g is functorial: Any Lie
algebra homomorphisms g; — go induces a morphisms of filtered algebras
U(g1) — U(g2), with the appropriate property under composition.

The inclusion g — T'(g) descends to a Lie algebra homomorphism

Jj9—U(g),

where the bracket on U(g) is the commutator. As a consequence of the
Poincaré-Birkhoff-Witt theorem, to be discussed below, this map is injective.
We will usually denote the image j(§) in the enveloping algebra simply by &,
although strictly speaking this is only justified once the Poincaré-Birkhoff-
Witt theorem is proved.

1.2. Universal property.
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THEOREM 1.1 (Universal property). If A is an associative algebra, and
f:9— A is a homomorphism of Lie algebras, then there is a unique mor-
phism of algebras fy: U(g) — A such that f = fyoj.

PROOF. The map f extends to an algebra homomorphism 7'(g) — A.
This algebra homomorphism vanishes on the ideal Z, and hence descends to
an algebra homomorphism fir: U(g) — A with the desired property. This
extension is unique, since j(g) generates U(g) as an algebra. O

By the universal property, any module over the Lie algebra g becomes a
module over the algebra U(g).

REMARK 1.2. If dim g < oo, the injectivity of the map j: g — U(g) can
also be obtained as a consequence of Ado’s theorem that any such Lie algebra
has a faithful finite-dimensional representation f: g — End(V'): Faithfulness
means that f is injective, and since f = fy o j it follows that j is injective
also.

If g1, g2 are two Lie algebras one has an isomorphism of filtered algebras

U(g1® g2) = U(g1) ® U(g2)

(the tensor product on the right satisfies the universal property of the en-
veloping algebra of g1 @ g2). A detailed proof may be found e.g. in [41,
Chapter V.2]

1.3. Augmentation map, anti-automorphism. The projection g —
0 is a Lie algebra homomorphism inducing the augmentation U(g) — K. Its
kernel is called the augmentation ideal, and is denoted U*(g). By con-
trast, Clifford algebras do not, in general, admit augmentation maps that
are (super) algebra homomorphisms.

1.4. Anti-automorphism. The map £ — —£ is an anti-automorphism
of the Lie algebra g, i.e. it preserves the bracket up to a sign. Define an
algebra anti-automorphism of T(g) by {1 ® - ®@ & — (—1)"& @ -+ ® &.
This preserves the ideal Z, and therefore descends to an anti-automorphism
of U(g), denoted s. That is, s(&1--- &) = (—1)%&, - -+ &.

1.5. Derivations. The functoriality of the construction of U(g) shows
in particular that any Lie algebra automorphism of g extends uniquely to
an algebra automorphism of U(g). Similarly, if D is a Lie algebra derivation
of g, then the derivation of T'(g) extending D preserves the ideal Z, hence it
descends to an algebra derivation of U(g). Thus

k

D(& &)= & &i1(D&)&isr &

i=1

106



CHAPTER 5. ENVELOPING ALGEBRAS

1.6. Modules over U(g). A module over U(g) is a vector space E
together with an algebra homomorphism U(g) — End(E). The universal
property of the enveloping algebra shows that such a module structure is
equivalent to a Lie algebra representation of g on E. The left-action of the
enveloping algebra on itself corresponds to the left regular representation
ol(&)x = &x. There is also a right reqular representation of'(¢)r = —x&. The
two actions commute, and the diagonal action is the adjoint representation
ad(§)r = {xr — x€ = [, z]. An element z lies in the center of U(g) if and
only if it commutes with all generators £. That is, it consists exactly of the
invariants for the adjoint action:

Cent(U(g)) = U(9)".

1.7. Unitary representations. Suppose g is a real Lie algebra, and
let g€ be its complexification. The enveloping algebra U (g(c) carries a unique
conjugate linear automorphism x +— 7 extending the complex conjugation
map on g€. Define a conjugate linear anti-automorphism

w: U(g%) = Ug"), z 2" =5(7).

A unitary representation of g on a Hermitian vector space E is a Lie algebra
homomorphism ¢: g — End(F) such that the elements of g are represented
as skew-adjoint operators. That is, o(£*) = p(£)*. Equivalently, it is a
+-homomorphism U(g®) — End(E).

1.8. Graded or filtered Lie (super) algebras. If g is a graded
(resp. filtered) Lie algebra, then the tensor algebra T'(g) is a graded (resp. fil-
tered) algebra, in such a way that the inclusion of g is a morphism. Further-
more, the ideal ideal Z defining the enveloping algebra is a graded (resp. fil-
tered) subspace, and hence the enveloping algebra U(g) inherits a grading
(resp. filtration). Put differently, this internal grading (rvesp. internal filtra-
tion) is defined by the condition that the inclusion j: g — U(g) preserves
degrees. The filtration from the construction in 1.1 will be called the ez-
ternal filtration. The total filtration degree is the sum of the internal and
external filtration degrees. The total filtration degree is such that the map
j: g — U(g) defines a morphism of filtered spaces, g[—1] — U(g). Given a
filtered Lie algebra g, the same Lie algebra with shifted filtration g[—1] is
again a filtered Lie algebra, and the total filtration for U(g) agrees with the
internal filtration for U(g[—1]).

If g is a Lie super algebra, one defines the enveloping algebra U(g) as a
quotient of the tensor algebra by the ideal generated by elements

¢@¢— (-1)Iklc o e ¢,

Then U(g) becomes a superalgebra, in such a way that j: g — U(g) is
a morphism of super spaces. If g is a graded (resp. filtered) Lie super
algebra, then U(g) becomes a graded (resp. filtered) super algebra, relative
to the internal grading (resp. filtration) defined by the condition that j is a
morphism of graded (resp. filtered) super vector spaces. It is also a filtered
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super algebra relative to the total filtration, defined by the condition that
j defines a morphism of filtered super spaces g[—2] — U(g). (The degree
shift by 2 is dictated by the super-sign convention: Recall that to view
graded, filtered vector spaces as graded, filtered super spaces, one doubles
the degree.) Given a filtered Lie super algebra g, the same Lie algebra with
shifted filtration g[—2] is again a filtered Lie super algebra, and the total
filtration for U(g) agrees with the internal filtration for U(g[—2]).

1.9.
(1)

Further remarks.

Given a central extension
0—>Kc—g—g—0
of a Lie algebra g, one can define level r enveloping algebras
Ur(g):=U(g)/ <c—r>, rekK

specializing to U(g) for r = 0. A module over U,.(g) is given by a g-
representation such that the central element c acts as multiplication
by r. Again, this construction generalizes to central extensions of
graded or filtered super Lie algebras.

Suppose V is a vector space, equipped with a symmetric bilinear
form B. Define a graded super Lie algebra

K[2] & V1],

where K[2] is the 1-dimensional space spanned by a central element
c of degree —2, and where [v,w| = 2B(v,w)c for v,w € V[1].
Shifting degree by 2, this becomes a filtered super Lie algebra K &
V[—1], for which ¢ now has degree 0. Its level 1 enveloping algebra
is the Clifford algebra,

Cl(V;B)=U1(Ka VI]-1]);
here the filtration on the Clifford algebra comes from the internal

filtration of the enveloping algebra.

2. The Poincaré-Birkhoff-Witt theorem

The Poincaré-Birkhoff-Witt theorem appears in several equivalent ver-
sions. The first version is based on the following observation.

LEMMA 2.1. For any permutation o of {1,...,k} and any &; € g,

& & —Eoy - Eory € U ().

PRrROOF. For transpositions of two adjacent elements, this is clear from
the definition of the enveloping algebra. The general case follows since such
transpositions generate the symmetric group. U
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It follows that the commutator or two elements of filtration degree k, [
has filtration degree k41— 1. Hence, the associated graded algebra gr(U(g))
is commutative (in the usual, ungraded sense) and the inclusion of g extends
to an algebra homomorphism

(60) S(g) — er(U(g))-

THEOREM 2.2 (Poincaré-Birkhoff-Witt, version I). The homomorphism
S(g) — gr(U(g)) is an algebra isomorphism.

For the second version, let {e;, i € P} be a basis of g, with a totally
ordered index set P. Using the Lemma, one shows that U(g) is already
spanned by elements of the form e;, ---e;, where ¢; < ---4,. Since the cor-
responding elements in S(g) are clearly a basis of S(g) we obtain a surjective
linear map

(61) S(g)%U(g), eil"‘eik p—)eil...ei

-
THEOREM 2.3 (Poincaré-Birkhoff-Witt, version II). The elements
{es, - ei | i <-or < i)
form a basis of U(g).

Equivalently, the map (61) is an isomorphism. Since a map of Zx>¢-
filtered vector spaces is an isomorphism if and only if the associated graded
map is an isomorphism, and since the associated graded map to (61) is (60),
the equivalence of versions LII is clear. A different lift of (60) is given by
symmetrization,

sym: S(g) = U(g), & & % > Ly Ew

’ seGy
It may be characterized as the unique linear map such that
sym(£*) = ¢
for all £ € g and all k, where on the left hand side the kth power &8 = ¢-.-¢
is a product in the symmetric algebra, while on the right hand side it is
taken in the enveloping algebra. (Note that the elements £¥ with & € g span
S*(g), by polarization.) The symmetrization map is the direct analogue of

the quantization map ¢: A (V) — CI(V) for Clifford algebras, which was
given by symmetrization in the graded sense.

THEOREM 2.4 (Poincaré-Birkhoff-Witt, version III). The symmetrization
map sym: S(g) — U(g), is an isomorphism of filtered vector spaces.

REMARK 2.5. It it rather easy to see that sym: S(g) — U(g) is surjec-
tive: For this, it suffices to show that the map S(g) — gr(U(g)) is surjec-
tive. But this follows e.g. since the elements e;, - - - ¢;, for weakly increasing
sequences i1 < ---i; span U(g). Hence, the difficult part of the Poincaré-
Birkhoff-Witt theorem is to show that the map sym is injective.
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THEOREM 2.6 (Poincaré-Birkhoff-Witt, version IV). There exists a g-
representation o: g — End(S(g)), with the property

(62) o(¢)(¢™) = ¢
forall € g, n>0.

To the equivalence with version III, suppose first that sym: S(g) — U(g)
is known to be an isomorphism. Let o” be the left regular representa-
tion of g on U(g), o"(&)z = €z, and let o be the g-representation on S(g)
corresponding to o under the isomorphism sym. Equation (62) follows
from o"(¢)sym(¢"?) = (¢ = (" = sym(¢"*!). Conversely, given a g-
representation o on S(g) satisfying (62), extend to an algebra morphism
0: U(g) — End(S(g)) and define a symbol map

o:U(g) = S(g), x— o(x).1.

Then

o(sym(¢")) = o(¢").1 = o(¢)".1 = (",
proving o o sym = idg(q). Since sym is surjective, it follows that sym is an
isomorphism.

A beautiful direct proof of version IV of the Poincaré-Birkhoff-Witt the-
orem was obtained Emanuela Petracci [56] in 2003. We will present this
proof in Section §5.5 below. In fact, Petracci’s argument yields the follow-
ing explicit formula for the representation:

(63) K€ =3 () Bt ack(o)

k=0

where B,, are the Bernoulli numbers, defined by

Notice that if £ = (, only the term k& = 0 contributes to (63) and we get (62)
as required. The verification that (63) defines a Lie algebra representation
on S(g) is the main task in this approach, and will be carried out in §5.5).

Recall that the Bernoulli numbers for odd n > 3 are all zero, while

By=1, By = —3, and

1 1 1 1 5
By=-, By=——, B¢g=—, Bs=——, Bjo=—,....
2= b 307 D6 = 4 U8 30" P10 66
One deduces the following expressions in low degrees:
o(Q)(1) =¢,

0(Q)(€) = &¢ — 3.,
0(Q) (€} = €3¢ — €l&, ¢ + §l&, 16, <)

110



CHAPTER 5. ENVELOPING ALGEBRAS

Once the Poincaré-Birkhoff-Witt theorem is in place, we may use the
symmetrization map sym: S(g) — U(g) to transfer the non-commutative
product on U(g) to a product * on S(g). By definition of symmetrization,
and of the enveloping algebra, we have

Gé& =36 *xL+6x&), [G,&6]=8x&—E&*E&h.
Hence
&+ & = 616 + 561, &)

The triple product is already much more complicated. One finds, after
cumbersome computation,

£3[61, &) + &1[&2, &3] + &alén, &3]
2

n €1, [€2, €3]] g €3, [51,52]]'

REMARK 2.7. Similar to the discussion for Clifford algebras, the isomor-
phism gr(U(g)) = S(g) induces the structure of graded Poisson algebra on
S(g). The Poisson structure is determined by {£1,&2} = [£1,&2] for genera-
tors &1,&2 € g, hence it coincides with the Kirillov-Poisson structure on the

space of polynomial functions on g*, see Example 3.3 in §2.3.

§1x &2 * &3 = 616283 +

3. U(g) as left-invariant differential operators

For any manifold M, let ®(M) denote the algebra of differential opera-
tors on M (cf. Section §2.3.1). Given an action of a Lie group G on M, one
can consider the subalgebra ® (M) of differential operators which commute
with the G-action. The isomorphism (defined by the principal symbol)

o gr*®(M) — I'°(M,S*(TM))
is G-equivariant, and restricts to an isomorphism on G-invariants,
(gr* D(M))® — T(M, S*(TM))“.

We also have an injection gr*(D(M)%) — (gr®* ®(M))%, but for non-compact
Lie groups and ill-behaved actions this need not be an isomorphism.

Consider now the special case of the left-action of G on itself. Let ®%(G)
denote the differential operators on G which commute with left translation.
The Lie algebra isomorphism

g XMG), ¢ ¢,

where g is teh Lie algebra of G, extends to an algebra homomorphism 7'(g) —
DL(G), which vanishes on the ideal Z. Hence we get an induced algebra
homomorphism

U(g) - D"(@),
taking the image of ¢ € g = T'(g) to ¢*. The Poincaré-Birkhoff-Witt
theorem now has a differential-geometric interpretation.
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THEOREM 3.1 (Poincaré-Birkhoff-Witt, version V). Let g be a finite-
dimensional Lie algebra over g, and G a Lie group integrating g. The canon-
ical map U(g) — D(Q) is an isomorphism of algebras.

Proor. We have
(G, 5*(TG))" = S(T.G) = S(g),
where the superscript G indicates invariants under the action by left multi-
plication. Consider the composition of maps
Skg — UWg - 0L(q) L Sk,

where the first map is symmetrization. As noted earlier, the associated
graded map S(g) — gr(U(g)) is independent of this choice, and we obtain a
sequence of morphisms of graded algebras,

(64) S(g) = gr(U(g)) = gr(®(G)) — S(9)-

The composition of these maps is the identity on S(g), since it is clearly the
identity on g. The last map is injective (since it comes from the inclusion
of gr(®*(G)) into gr(D(G))* = S(g))), hence it must be an isomorphism.
The first map is surjective (since the ey span U(g)), hence it too must be an
isomorphism. But then the middle map must be an isomorphism as well. [J

Note that the proof also gives Version III, and hence als versions [,LI[,IV,
of the Poincaré-Birkhoff-Witt theorem for the case of finite-dimensional real
Lie algebras. Recall however that these argument depend on Lie’s third
theorem, which is not considered an elementary result. By contrast, the
argument in §5.5 of the Poincaré-Birkhoff-Witt theorem is purely algebraic.

4. The enveloping algebra as a Hopf algebra

4.1. Hopf algebras. An algebra may be viewed as a triple (A, m,1)
consisting of a vector space A, together with linear maps m: A @ A — A

(the multiplication) and i: K — A (the wunit), such that
o mo(m®1)=mo(l®m) (Associativity),
(65) mo(i®1l)=mo(1®i)=1 (Unit property).

It is called commutative if moT = m, where T: AQA - ARQA, z@2" —
7' ®x exchanges the two factors. A coalgebra is defined similar to an algebra,
but with ’arrows reversed’:

DEFINITION 4.1. A coalgebra is a vector space A, together with linear
maps
A A—-ARA e: A—-K
called comultiplication and counit, such that
(A®1)oA=(1®A)oA (Coassociativity),
(e®@1)oA=(1®¢)oA =1 (Counit property).

It is called cocommutative if T o A = A.
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It is fairly obvious from the definition that the dual of any coalgebra
is an algebra. By contrast, the dual of an algebra A is not a coalgebra, in
general, since the dual map m*: A* — (A ® A)* does not take values in
A* ® A* unless dim A < oo. There is an obvious notion of morphism of
coalgebras; for example the counit provides such a morphism.

A Hopf algebra is a vector space with compatible algebra and coalgebra
structures, as follows:

DEFINITION 4.2. A Hopf algebra is a vector space A, together with
maps m: A® A — A (multiplication), i: K — A (unit), A: A - AR A
(comultiplication), ¢: A — K (counit), s: A — A (antipode), such that

(1) (A m, i) is an algebra,

(2) (A, A, e) is a coalgebra,

(3) A and € are algebra morphisms,

(4) s is a linear isomorphism and has the property,

mo(l®s)oA=mo(s®l)oA=ioe.
REMARKS 4.3. The condition (3) that A,e are algebra morphisms are

equivalent to m, 7 being coalgebra morphisms. Indeed, both properties are
expressed by the formulas

Aom=mem)o(10T ®@1)(A®A),
eRXe=¢€eom,
Aoi=1i®1,
eog=1.
Furthermore, it is automatic [41, Theorem II1.3.4] that s is an algebra anti-

homomorphism as well as a coalgebra anti-homomorphism, and that soi =
1, €0S =E€.

Hopf algebras may be viewed as algebraic counterparts, or rather gen-

eralizations, of groups. Indeed any group defines a Hopf algebra:

EXAMPLE 4.4. Let I" be any group, and KI[I'] its group algebra. Thus
K[I'] has vector space basis I, with unit ¢(1) = e and with the multiplication
m(g®g')=gg, i(1)=e,
extended to general elements }  .ray g € K[I'] by linearity. The algebra

structure extends to a Hopf algebra structure by putting

Alg)=g®g, €D agg)=ac, sg)=g "
gel

In this example, the group I' can be recovered from the Hopf algebra
K[I'] as the elements satisfying A(z) = x ® x. This motivates the following
notion.

DEFINITION 4.5. An element x of a Hopf algebra (A, m, i, A€, s) is called
group-like if A(x) =z ® .
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PROPOSITION 4.6. The set of group-like elements is a group, with mul-
tiplication m, inverse x=1 = s(z), and group unit e = i(1).

PROOF. Since A is an algebra morphism, the product of two group-like
elements is again group-like. Since s is a coalgebra anti-homomorphism one
has, for any group-like element z,

Als(z)) = (s @s)(T(A(2))) = (s @ 5)(A(x)) = s(x) @ s(x),

so that s(x) is group-like. By applying € ® 1 to the definition, one verifies
that group-like elements satisfy €¢(xz) = 1. This then shows

m(z @ s(z)) = m(1 ©5)(A)) = i(e(z)) = i(1) = e,
and similarly m(s(z) ® x) = e. Hence s(z) = 1. O

ExXAMPLE 4.7 (Finite groups). Let A = C(I',K) be the algebra of func-
tions on a finite group I', with m the pointwise multiplication and ¢ given is
the inclsuon as constant functions. Define a comultiplication

A: C(ITLK) - C(I,K)® C(T,K) =C(I' xTI',K),
a counit €, and an antipode s by

A(f)(g1,92) = f(g192), €(f) = fle), s(f)(g) = f(g_l)-

Then (A, m,i,A,e,s) is a finite-dimensional Hopf algebra. Its group-like
elements are given by I' = Hom(I', K*) C A.

REMARK 4.8. One can show [41, Proposition II1.3.3] that the dual of
any finite-dimensional Hopf algebra (A, m,i, A, e,s) is a Hopf-algebra

(A", A" €, m* i, s").

For instance, if T is a finite group the Hopf algebras K[I'] and C(T',K) are
dual.

REMARK 4.9. Any Hopf algebra A gives rise to a group
I' 4 = Hom,e (A, K)
(algebra homomorphisms) with product

P12 = (1 ® P2) 0 A,

inverse ¢~! = ¢ o s, and group unit e = . If A = C(T',K) for a finite group
I", then the map

I' =Ty, g— [evg: = f(g)}
is an isomorphism. (Tannaka-Krein duality, see e.g. [15, Chapter II1.7].)
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4.2. Hopf algebra structure on S(F). Let E be a vector space (pos-
sible dim F = o), and (S(F), m,i) the symmetric algebra over E. Any
morphism of vector spaces induces an algebra morphism of their symmetric
algebras; in particular the diagonal inclusion £ — E @ F defines an algebra
morphism

A:S(E)—» SE)®S(E)=SEa®E).
Let s: S(E) — S(F) the canonical anti-automorphism (equal to v — —v
on E C S(E)), and let e: S(E) — K be the augmentation map. Then
(S(E),m,i,A,e,s) is a Hopf algebra. Since A(v) =v® 1+ 1 ® v, we have

k
k o
AW =@wel+lv)l=>" ( .)vk_] ® .
=0
By polarization, elements of the form v* span all of S¥(E), hence these
formulas determine A.

Since all the structure maps preserve gradings, they extend to the degree
completion

S(E) = ﬁ SH(E)
k=0

given by the direct product. Thus S(F) is again a Hopf algebra. For any
v € V, the exponential

is a group-like element of S(F). Indeed

A(e’)=e"®e"
by the formulas for A(v¥). For the multiplication map, counit and antipode
we similarly have

m(e’ ®@e’) =e’e”, e(e’)=1, s(e’)=¢e".

4.3. Hopf algebra structure on U(g). Let g be a Lie algebra, and
(U(g), m,1i) its enveloping algebra U(g). The diagonal inclusion g — g @
g, £ — £ D& is a Lie algebra morphism, hence it extends to an algebra
morphism

A:U(g) »U(g)®U(g) =U(g & 9)

Together with the counit e: U(g) — K given as the augmentation map, and
the antipode s: U(g) — U(g) given by the canonical anti-automorphism of
U(g), we find:

THEOREM 4.10. (U(g), m,i,A,€,5s) is a cocommutative Hopf algebra.

The example S(FE) from the last section is a special case, thinking of E
as a Lie algebra with zero bracket.
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PrOOF. By definition, A and e are algebra homomorphisms. The coas-
sociativity of A follows because both (A ® 1) o A and (1 ® A) o A are the
maps

U(g) »U(g)2U(g)@U(g) =U(g g @ 9)

induced by the triagonal inclusion. The counital properties of € are equally
clear. It remains to check the properties of the antipode. The property
mo(l®s)oA =ioeis clearly true on scalars i(K) C U(g), while the general
case follows by induction on the filtration degree: if the property holds on
z e UW(g), and if € € g, then i(e(éx)) = 0 since £z is in the augmentation
ideal, and also

m((1@s)(A(&x))) =m((1@s)(f@1+10EA(r))
=m((@1)(1@s)(A(x)) —m((1@s)(Az))(1@E))
= Sm((l ®S)( ( ) —m((1@s)(A(2)))¢

where we used that s is an anti-homomorphism. The property mo(s®@1)oA =
1 0 € is verified similarly. Cocommutativity 7 o A = A follows since it
holds on generators v € g, and since 7: U(g) ® U(g) — U(g) ® U(g) is an
algebra homomorphism (induced by the Lie algebra isomorphism (&1,&2) —

(£2,61))- O

To summarize, we can think of U(g) as an algebraic analogue or sub-
stitute for the Lie group G integrating g. (The cocommutativity of U(g) is
parallel to the fact that C(G,K) is a commutative algebra.) This point of
view is taken in the definition of quantum groups, which are not actually
groups but are defined as suitable Hopf algebras.

It is obvious that for g non-abelian, the symmetrization map sym: S(g) —
U(g) does not intertwine the multiplications m. On the other hand, it in-
tertwines all the other Hopf algebra structure maps:

PROPOSITION 4.11. The symmetrization map sym: S(g) — U(g) inter-
twines the comultiplications A, counits €, antipodes s, and units i of the Hopf
algebras S(g) and U(g). In particular, sym is a coalgebra homomorphism.

PROOF. It is clear that sym oi = ¢. The symmetrization map is functo-
rial with respect to Lie algebra homomorphisms g; — g2. Functoriality for
the diagonal inclusion g — g @ g shows that sym intertwines A, while func-
toriality relative to the projection g — {0} implies that sym intertwines e.
Finally, let &1,...,& € g, and & --- & € S(g) its product in the enveloping
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algebra. Then
sym(s(&1, .., &) = (=1)F sym(&1, ..., &)
(=)

=" Z Es(1) -+ Esh)
sEBy
1
= HS< Z Es(k) - .-55(1)>
seG

= s(sym(&1,...,&)).
O

REMARK 4.12. There is a formula for A(£F), € € g, similar to that for the
symmetric algebra, see §5.4.2. Since the structure maps of the Hopf algebra
are filtration preserving, they pass to the colimit U (g) = limy_,o U¥)(g). As
for the symmetric algebra, elements e¢ = Y o %ﬁk, £ € g are well-defined
group-like elements of U(g).

4.4. Primitive elements. It is in fact possible to recover g from U(g).
For this we need the following

DEFINITION 4.13. An element x of a Hopf algebra (A, m,i, A ¢,s) is
called primitive if A(x) = x® 1+ 1® x. Let P(A) denote the space of
primitive elements.

LEMMA 4.14. For any Hopf algebra A, the space of primitives P(A) is
a Lie subalgebra under commutator.

PROOF. Suppose z,y are primitive. Since A is an algebra homomor-
phism,

Azy —yz) = A(z)Ay) — A(y)Az)
=(ze1+192)(ye1+10y) - (y@1+1xy)(r01+1x®1)
=(zy—yzr)®1+1® (zy — yx),

which shows that xy — yx is primitive. ([

For any vector space E, we have E C P(S(E)) by definition of the
coproduct. More generally, for any Lie algebra we have g C P(U(g)).

LEMMA 4.15. For any vector space E over K, the set of primitive ele-
ments in the symmetric algebra is P(S(E)) = E.

PROOF. It is clear that P(S(E)) is a graded subspace of S(E) containing
E. Since elements of degree 0 cannot be primitive, it remains to show that
there are no primitive elements of degree k > 1. Given u € E*, let

(idg(z @p): S(E) ® S(E) — S(E) @ K = S(E)

be the identity map on the first factor and the pairing with p € E* C S(E)*
on the second factor. Since this map vanishes on S(E) ® S*(E) for k # 0,
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we have

sty @A) = (@ Y ()0 oot
k=0

— nvn71<

s V).

We hence see that (- ® u) o A =ig(u). If x € S¥(E) is primitive, it follows
that

ts(pz = (idgmy @p)(l®@r+z®1) = (u, z),
If £ > 1, the right hand side vanishes. This shows z = 0. (]
According to the Poincaré-Birkhoff-Witt theorem, the symmetrization

map is an isomorphism of coalgebras S(g) — U(g). Since the definition of
primitive elements only involves the comultiplication, we may conclude that

P(U(g)) =g,
an isomorphism of Lie algebras. In summary, g can be recovered from the
Hopf algebra structure of U(g).

4.5. Coderivations. A derivation of an algebra (A, m,i) is a linear
map D: A — A satisfying Dom = mo (D ® 1+ 1® D). Similarly one
defines:

DEFINITION 4.16. A coderivation of a coalgebra (A, A, €) is a linear map
C: A — A satisfying

AoC=(C®1+1®C)oA.

The space of derivations of an algebra is a Lie algebra under commutator.
The same is true for coderivations of a coalgebra:

LEMMA 4.17. The space of coderivations of a coalgebra is a Lie algebra
under commutator.

Proor. If C7,Cy are two coderivations, then
AoCioCy=(C1®14+1®C1)o(Ca®1+1®Cy)o0A
=(C10C2®1410C10C+C1®@Ce+Cy®C1)o A

Subtracting a similar equation for A o Cy o 'y, one obtains the derivation
property of [C1,Cs] = C1 o0 Cy — Cy0 (Y. O

PROPOSITION 4.18. For any Hopf algebra (A, m,i, A, €), the map
PAxA—A

given by restriction of m is an action of the Lie algebra of primitive elements
by coderivations.

PrOOF. For £ € P(A) and = € A,
Alx) =AA(z) = @1+ 1REA(x). O
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COROLLARY 4.19. The left reqular representation of g on U(g)
o": g = End(U(g)),
given by o"(&)x = &x is an action by coderivations of U(g).
PROOF. Immediate from the Proposition, since the elements of g C U(g)

are primitive. U

4.6. Coderivations of S(E). Let E be a vector space. Recall that
the space of derivations of S(F) is isomorphic to the space of linear maps
E — S(E), since any such map extends uniquely as a derivation. Thus

Der(S(FE)) = Hom(E, S(E))

as graded vector spaces. Dually, one expects that the space of coderivations
of the co-algebra S(E) is isomorphic to the space Hom(S(F), E). In more
geometric terms, we may think of the elements of

S(E)* = Hom(S(E),K) = ﬁ Sk(E)*
k=0

as formal functions on E, i.e. Taylor expansions at 0 of smooth functions
on E. Accordingly we think of elements X € Hom(S(E), F) as formal
vector fields. Any formal vector field is determined by its action on elements
o™ € S"(E), for n = 0,1,.... It is convenient to introduce the ‘generating
function’ e = Y72 %vk € S(E)[[t]]; then X is determined by X (e'’) €
E[[t]]. A coderivation C' of S(FE) defines a derivation C* of the algebra
S(E)*, and hence should correspond to a formal vector field.

THEOREM 4.20. There is a canonical isomorphism
Coder(S(E)) 2 Hom(S(E), E)

between the space of coderivations of S(E) and the space of formal vector
fields on E. The isomorphism takes X € Hom(S(E), E) to the coderivation

C=mo(1®X)oA.

PROOF. It is convenient to work with the generating function V. Since
A(e) =e" @ e € S(V @ V)|[[t]], the formula relating X and C reads,

C(etv) — eth(etv).

Explicitly, we have

Clo") = Zn: (Z) oF X (v )

k=0
for all n = 0,1,2,.... We first show that if C' is a coderivation, then
X (e) := e ™C(e™) lies in E[[t]] C S(F)[[t]]. Equivalently, we show that
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X (e!?) is primitive:
A(X (")) = Ale™™)A(C(e™))
=™ . (Co1+100)A(™)
= ™e ™) (Ce") @ + e @ C(e))
=e Ce™)@1+1®e O ()
=XE®1+1 X(").

Conversely, if X € Hom(S(FE), E), a similar calculation shows that C'(e'’) :=
e’ X (e!?) defines a coderivation:

A(C(e")) = (" @ ") A(X ("))
— (etv ® etv)(X(etv) ® 1 + 1 ® X(etv))
=C(e")@e"” + e ® Ce™)
=(C®1+1®C)oA(").
(]

PROPOSITION 4.21. The Lie bracket on Hom(S(E), E) induced by the
isomorphism with the Lie algebra Coder(S(E)) of coderivations reads,

(66) [ X1, Xa](e") = X1(e" Xa(e")) — Xa(e™ X1 ("))
ProOOF. For any Y € E we have

0
Cl (etvy) —_ % |s:001 (etv+sY)

— 88 ’s:Oetv+SYX1 (etv—i-sY)
S

=" X1 (e")Y + e X1 (eY).
Putting Y = X5 (e™) € E[[t]] we find
C1(Cae!?)) = et X1 () Xo(et?) + e X7 (et X ()
and consequently

[Cy, O] (e™) = e X1 (e Xa(e™)) — e Xa (e Xa(e™)). O

5. Petracci’s proof of the Poincaré-Birkhoff-Witt theorem

Our goal in this Section is to prove version IV of the Poincaré-Birkhoff-
Witt theorem. We will indeed prove a more precise version, Petracci’s theo-
rem 5.1 below, explicitly describing the g-representation on S(g) correspond-
ing to the left regular representation on U(g).

To simplify notation, we will omit the parameter ¢ from the ‘generating

functions’ e, and simply write e.g.

C(e”) =e"X(e).
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This is a well-defined equality in S(E) if X (hence C) is homogeneous of
some fixed degree; otherwise we view this identity as an equality of formal
power series in t, obtained by replacing v with tv.

5.1. A g-representation by coderivations. The main idea in Pe-
tracci’s approach to the Poincaré-Birkhoff-Witt theorem is to define a g-
representation on S(g), which under symmetrization sym: S(g) — U(g)
goes to the left-regular representation

0"+ g — End(U(g)), 0"(¢).w=(x
of g on U(g). The representation should be by coderivations of S(g), since
0" (¢) is a coderivation (cf. Corollary 4.19) and sym is a coalgebra homomor-
phism (cf. Proposition 4.11). Equivalently, we are interested in Lie algebra
homomorphisms

0: g — Hom(S(g),9), ¢+— XS,

Using differential geometry, one can make a guess for X¢, as follows. Suppose
K = R, and let G be a Lie group integrating g. The left regular represen-
tation of g on U(g) can be thought of as a counterpart to the left-action
of G on itself, and the symmetrization map is an algebraic counterpart® to
the exponential map exp: g — G. The exponential map is a local diffeo-
morphism on an open dense subset gz C g. We may view the pull-back
exp*(¢f) € X(gy) as a g-valued function on gy. Explicit calculation (see
Section 4 in Appendix C) gives that this function is

£ — o(adg)C,
with ¢(z) = —%5. This suggests defining X¢ € Hom(S5(g), g) by X¢(e) =
¢(ade)¢, and this formula makes sense for any field K. Petracci’s theorem
below shows that this is indeed the correct choice.
THEOREM 5.1 (Petracci). Let X¢ € Hom(S(g),g), ¢ € g be the formal
vector fields defined by
X¢(ef) = plade)¢

where ¢(z) = ==5. Then

ez
[XCI’X<2] _ X[Cl,Cz]’

and ¢ is the unique formal power series with ¢(0) = 1 having this property.
Hence, the formal vector fields X¢ define a representation by coderivations.

The proof will be given in 5.3, after some preparations.

More concretely, the symmetric algebra S(g) may be identified with the convolution
algebra of distributions (generalized measures) on g supported at the 0, while U(g) is
identified with the convolution algebra of distributions on G supported at the group e.
The infinitesimal g-action generating the left multiplication is given by the right-invariant
vector fields,

¢ =
Push-forward exp, of distributions gives an isomorphism of distributions supported at 0
with those supported at e, and this isomorphism is exactly the symmetrization map.
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THEOREM

5.2. The formal vector fields X¢(¢). We have to develop a technique
for calculating the commutator of formal vector fields of the form ef
¢(ade)(, for formal power series ¢ € K[[z]]. To this end, we introduce the
following notations. For { € g, we define a linear map

K[[z]] — Hom(S(g).8), ¢+ X*(¢)
by X¢(¢)(e) = ¢(ad¢)(¢). We also define linear maps
K([21, 22]] — Hom(S(g), 8), ¢ = X (¢)
for (1, (s € g, taking a monomial zflzéw to the formal vector field
XU (211252 (ef) = [adg! (G1), adg? ()]
PROPOSITION 5.2. For all ¢ € K[[2]] and (1,(2 € g,
X[Cl,Cz](¢) — X 61.C2 (A¢)

where A¢ € K[[z1, 22]] is the formal power series (Ap)(z1,22) = ¢(z1 + 22).

PROOF. It is enough to check on monomials ¢(z) = 2.

on n,

By induction

n

ad? [Cl, CQ] = Z (?) [ad% Cl; ad?_i C2]7

1=0

hence X612l (27) = X€C2 (21 + 29)"). O

Given ¢ € K[[z]] we define power series in two variables by

¢(21 + 22) — P(22)
21

P21 +22) — d(21)

22

5(1)¢(21’ 22) =

6 (21, 22) =
PROPOSITION 5.3. For any ¢ € K[[z]], and any (,Y € g,
X(g)oy =X Wg), (Y es

On the left hand side Y is identified with the operator S(g) — S(g) of
multiplication by Y. Put differently, we think of Y as a ‘constant’ element
of Hom(S(g),g) = Coder(S(g))-

PrROOF. On monomials 2", the formula says that

XC(z")(Yeb) = XKC(W)(@{).
21
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The proof is an induction on n: The cases n = 1 is clear, while

XSE(YeS) = 0| ad™ e+

S 1s=0

= [Y,ad"(€)¢] + ad(g)ai | ad"(€+ Y
= [Vad"(€)¢] + ad( X (z") (V)

= X))+l X (A

21+ 29)" — 28
— xY¢ (2121 ¥ (o1 4 @)M)(é)

21
n+l1 _ n+l
(s gty g
z1
using the induction hypothesis for the fourth equality sign. O

PROPOSITION 5.4. The Lie bracket of vector fields X (¢1) and X< (¢2)
is given by the formula,

(X (01), X2 ()] = X2 (6@ gy m30n + 6V min),
where (75¢)(21,22) = ¢(z5) for j =1,2.
PROOF. By definition of the Lie bracket (66),
(X (1), X2 ()] (%) = X (1) (e° X2 (h2) (€%)) — X2 (o) (e X (1) (e")).

To compute the first term we put Y = X2(¢9)(ef) = ¢a(ad¢)(2, and use
the previous Proposition:

X (@1)(S X (g2)(e%)) = (X (6Wg1)) ().

Writing 6(V¢; as a linear combination of monomials zflzgz, and using the
computation

(X4 (1 42))() = [adf* V. adf? 1]
= [adg* ¢2(adg)Ca, adg® 1]
= X0 (2] 252 (21)) (¢)
we find
X9 (61)(eS X% (02)(¢)) = X (6Wgn i) (e€)
= x4 (5061 m300 ) (e9).
Similarly
X2 (o) (X (1) (%)) = X0 (6W w1 ) ().

Hence the Lie bracket is —X¢1:¢2 (6(2)¢1 T+ 0y Ti$1), as claimed. O
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As a special case ¢ = ¢1 = ¢a, we see that [ X1 (¢), X2(¢)] = X2 (y)
where

w(zl’ 22) _ _¢(Zl + 2’2) — ¢(Z2>¢(21) _ ¢(Zl + 22) — ¢(z1)

<1 22

P(z2).

5.3. Proof of Petracci’s theorem. Since X[¢:¢](¢) = X1:¢2(A¢) we
see that ¢ — X¢(¢) is a Lie algebra homomorphism if and only if ¢ satisfies
the functional equation,

P21 + 22) — ¢(Z2)¢(21) N ¢(21 + 22) — P(21)

21 22

(21 + 22) + B(2z2) = 0.

The equation may be re-written

Pz +2) _ (<z><zl> ¢(z2>> (1+ o(z1) | ¢<22>>‘1.

21 + 22 21 29 21 z2

Suppose ¢ € K[[z]] is a non-zero solution of this equation. Putting z; = z9 =
z, we see that the leading term (for z — 0) in the expansion of ¢ cannot be
of order zF with k > 1, or else the left hand side would be of order z*~1 while
the right hand side is of order z2*=2. That is, if ¢ is a non-zero solution then
z
P(z) =14+ —
=155
is a well-defined element ¢ € KJ[[z]]. A short calculation shows that, in
terms of 1, the functional equation is simply ¥ (z; + 22) = ¥(21)¥(22). The
solutions are ¥(z) = e with ¢ € K, together with the trivial solution
¥(z) = 0. We conclude that the solutions of the functional equation for ¢
are

¢(Z):€CZZ:7—1’ 07&0

together with the solutions ¢(z) = —z and ¢(z) = 0. In particular, there is a
unique solution with ¢(0) = 1, given by ¢(z) = *5. This proves Petracci’s
theorem 5.1.

REMARK 5.5. The g-representation on S(g) defined by the exceptional
solution ¢(z) = —z is just the adjoint representation:

CC(=2)(ef) =X (=2) () = [(. €] e = C°(=2)(€") = nl¢, )¢

6. The center of the enveloping algebra

We have already observed that the center of the enveloping algebra U (g)
is just the ad-invariant subspace,

Cent(U(g)) = (U(9))*.

Elements of the center are also called Casimir elements. The symmetriza-
tion map is g-equivariant, hence it defines an isomorphism of vector spaces

sym: (Sg)? — Cent(U(g)).
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EXAMPLE 6.1. Suppose that g carries an invariant non-degenerate sym-
metric bilinear form B. If e; is a basis of g, and ¢’ the B-dual basis (so
that B(e;,e/) = &7), the element p = >, e;e’ € S%(g) is invariant. Its image
sym(p) € U(g) under symmetrization is called the quadratic Casimir of the
bilinear form.

REMARK 6.2. Suppose K = R, and that g is the Lie algebra of Lie group
G. In terms of the identification U(g) = D%(G), the center corresponds
to the space @LXR(G) of bi-invariant differential operators. For instance,
if G is a quadratic Lie group (i.e. if g carries a non-degenerate invariant
symmetric bilinear form B), then the operator

D= Z eF(eHr

(where e; € g is a basis of g, and €’ € g is the B-dual basis) is the bi-invariant
differential operator corresponding to the quadratic Casimir element.

Suppose for the rest of this section that K = C and dim g < co. Suppose
0: g — End(F) is a g-representation on a finite-dimensional complex vector
space E. Extend to a representation o: U(g) — End(FE). If z € Cent(U(g)),
the operator go(z) commutes with all o(y), y € U(g). If ¢ is irreducible, this
implies by Schur’s lemma that o(x) is a multiple of the identity. That is,
any irreducible representation determines an algebra homomorphism

Cent(U(g)) — K, z — o(z).

For semi-simple Lie algebras, it is known that this algebra homomorphism
characterizes o up to isomorphism. In fact, it suffices to know this map on a
set of generators for Cent(U(g)). For example, if g = s[(2, C), any irreducible
representation is determined by the value of the quadratic Casimir in this
representation. It is therefore of interest to understand the structure of
Cent(U(g)) as an algebra.

The symmetrization map sym: S(g) — U(g) restricts to an isomorphism
on invariants, (S(g))? — (U(g))? = Cent(U(g)). Unfortunately this re-
stricted map is not an algebra homomorphism.

EXAMPLE 6.3. Suppose g is a quadratic Lie algebra, with non-degenerate
symmetric bilinear form B. Let e; be a basis of g and e’ the B-dual basis, and
consider p = >, e;e’. Let fi, = B(lei, €], ex) be the structure constants.
We use B to raise or lower indices, e.g. f;;* = >, fi;uB(€!,e™). We have

sym(p?) = Z sym(e;e’e;e’)
ij

1 S . o
=3 g (eie'eje! + e'ejeie! + ejejele’)
j
where we have used basis independence to identify some of the expressions
coming from the symmetrization. (For instance, ), e;eje’e! =) . e'ejeel.)

125
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Using the defining relations in the enveloping algebra, this becomes

sym(p?) = 3 Z(Qeielejej —€'le, ej]e? + eeje’e! —e'elle;, e4))
]

1 o . o
=3 Z(Beieleje] — 2e'le;, ejle! — e'el[e;, €5])
ij
1 -
= (sym(p))* + 3 Z(fijkelejek)

ijk

= (sym)) + ¢ 3w et
ijkl
We hence see that sym(p?) # (sym(p))? in general. Note that Zij(fijkfiﬂ
are the coefficients of the Killing form on g. If g is simple, the Killing
form is a multiple of B, and the correction term is a multiple of sym(p).
For instance, if g = s0(3), with B-orthornormal basis e, ez, e3 satisfying
[e1,e2] = e3, [e2,e3] = e1, [e3,e1] = ea, we obtain

sym(p?) = sym(p)” + %Sym(p)-

Duflo’s theorem says that this failure of sym: S(g) — U(g) to restrict
to an algebra isomorphism on invariants, can be repaired by pre-composing
sym with a suitable infinite-order differential operator on S(g).

Let us introduce such infinite-order differential operators on S(V') for any
finite-dimensional vector space V. The symmetric algebra S(V') is identified
with the algebra of polynomials on V*. Any u € V* defines a derivation
ts(p) of this algebra, given by

Ls(p)v = (p,v)

on generators v € V. The map pu +— tg(p) extends to an algebra homomor-
phism S(V*) — End(S(V)), and even further to an algebra homomorphism

S(V)* — End(S(V)) where S(V)* = S(V*) is the algebraic dual
sy =[5 v
k=0

One may think of S(V)* as an algebra of ‘infinite order differential operators’
acting on polynomials S(V') = Pol(V*).

For p € S(V)*, the corresponding operator p = ts(p) € End(S(V)), is
characterized by the equation

ple") = p(tv)e™,
an equality of formal power series in ¢ with coefficients in S(V').

More generally, if f is a smooth function defined on some open neigh-
borhood of 0 € V, its Taylor series expansion is an element of S(V)*, and

hence the operator f € End(S(V)) is well-defined.
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Returning to the setting for Duflo’s theorem, consider the function
J1/2(§) — detl/Q(j(adg)) — el/2tr10g(j(ad§))7

with j(z) = Sin}zl%/ 2 As discussed in §4.3, J/2 is a well-defined holomorphic

function of £ € g if K = C. Modulo terms of order > 4 in £, one finds
1
JVHE) =1+ @trg(adg) +....

Note that the first correction term is a multiple of the quadratic form asso-
ciated to the Killing form on g. If K is a arbitrary field of characteritic zero,
J/2 is is well-defined (via its Taylor series) as an element

J'/? € Hom(5(g), K) = S(g)"
The function J'/? defines an operator J1/2 e End(S(g))-

THEOREM 6.4 (Duflo [25]). The composition
sym o J1/2, S(g) = Ulg)
restricts to an algebra isomorphism (S(g))® — Cent(U(g)).

In §7.3, we present a proof of Duflo’s theorem for the case that g is a
quadratic Lie algebra. This proof will relate the appearance of the factor
J'/2 in Duflo’s theorem with that in the theory of Clifford algebras.
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CHAPTER 6

Weil algebras

For any Lie algebra g, the exterior and symmetric algebras over g*
combine into a differential algebra W(g), the Weil algebra. The present
chapter will develop some aspects of the theory of differential spaces and
g-differential spaces, as needed for our purposes. (We refer to Appendix A
to background material on graded and filtered super vector spaces.) We will
then introduce the Weil algebra as a universal object among commutative
g-differential algebras with connection. By considering non-commutative
g-differential algebras with connection, we are led to introduce also a non-
commutative Weil algebra. We will discuss applications of the two Weil
algebras to Chern-Weil theory and to transgression.

1. Differential spaces

~ DEFINITION 1.1. A differential space is a super vector space E = E%®
E', equipped with an odd operator d: E — FE such that dod = 0, i.e.
im(d) C ker(d). One calls

the cohomology of the differential space (E,d). It is again a super vector
space, with Zo-grading inherited from E. A morphism of differential spaces
(also called cochain map) (E1,d1) — (Fa,d2) is a morphism of super vector
spaces intertwining the differentials.

The category of differential spaces, with cochain maps as morphisms,
has direct sums

(E1,d1) @ (E2,d2) = (B @ Eo, dy ©da)
and tensor products
(E1,d1) ® (Fa,d2) = (E1 ® Ea, di ®@ 1+ 1 ®da2),

with the usual compatibility properties. It is thus a tensor category, and one
can consider its algebra objects, Lie algebra objects and so on. For exam-
ple, a differential algebra (A,d) is a differential space with a multiplication
morphism

m: (A,d)® (A,d) — (A,d)
and a unit morphism

it (K,0) = (A,d)
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2. SYMMETRIC AND TENSOR ALGEBRA OVER DIFFERENTIAL
SPACES

satisfying the algebra axioms (Equation (65) in §5.4.1). One finds that this
is equivalent to A being a super algebra, with a differential d that is a
derivation of the product. The cohomology H(A,d) of a differential algebra
is again a super algebra. One similarly defines differential Lie algebras,
differential coalgebras, differential Hopf algebras and so on. We will not
spell out all of these definitions.

There are parallel definitions of categories of graded differential spaces
(also known as cochain complexes) or filtered differential spaces. Thus, a
graded (resp. filtered) differential space (E,d) is a graded (resp. filtered)
super vector space E with a differential d of degree (resp. filtration degree)
1. Its cohomology H(F,d) is again a graded (resp. filtered) super vector
space. Morphisms of graded (resp. filtered) differential spaces are morphism
of graded (resp. filtered) super vector spaces intertwining the differentials.

REMARK 1.2. If (E,d) is a (graded, filtered) differential space, and n €
Z then the same space with degree shift (E[n],d) is a (graded, filtered)
differential space (E[n],d). Indeed, we can regard E[n] as a tensor product
of differential spaces E @ K[n| where K[n| carries the zero differential.

ExaMpPLE 1.3. For any manifold M, the algebra of differential forms
Q(M) is a graded differential algebra.

EXAMPLE 1.4. Let K[¢] be the commutative graded super algebra!, gen-
erated by an element ¢ of degree —1 satisfying > = 0. (Thus K[¢] = K-t &K
as a graded super vector space.) Then K[i] is a graded differential algebra
for the differential d(be + a) = b.

ExaMPLE 1.5. Let g be a Lie algebra, and consider the graded super Lie
algebra g[1] x g with degree -1 generators I¢ € g[1] and degree 0 generators
L¢ € g, labeled by £ € g. It is a graded differential Lie algebra with differ-
ential is d(I¢) = L¢, d(L¢) = 0. It may also be viewed as follows. Regard g
as a graded differential Lie algebra with trivial grading and zero differential.
Then

g[l] x g =g @ K[t] = g[t,
a tensor product with the commutative graded differential algebra K[| from
Example 1.4.

2. Symmetric and tensor algebra over differential spaces

Suppose FE is a super vector space. Then the tensor algebra T'(E) and
the symmetric algebra S(FE) carry the structure of super algebras, in such a
way that the inclusion of E is a morphism of super vector spaces. Rcall that
the definition of the symmetric algebra S(E) uses the super-sign convention
(cf. Appendix A): It is the algebra with generators v € F, and relations

vw — (=1)Plyy = 0,

Here [] does not indicate a degree shift, but signifies a polynomial ring.
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for homogeneous elements v, w € F.

If E is a graded (resp. filtered) super space, the algebras S(E),T(E)
inherit an internal grading (resp. internal filtration), with the property that
the inclusion of E preserves degrees. We can also consider the total grading
(resp. total filtration), obtained by adding twice the external degree, i.e. such
that the inclusion defines morphisms of graded resp. filtered super spaces
E[-2] — S(E),T(E). Note that S(E) with the total grading is isomorphic
to S(E[—2]) with the internal grading, and similarly for the tensor algebra.

From now on, unless specified otherwise, we will always work with the
internal grading or filtration.

If (F,d) is a (graded, filtered) differential space, then S(E), T'(E) carry
the structure of (graded, filtered) differential algebras, in such a way that
the inclusion of E is a morphism. The differential on these super algebras
is the derivation extension of the differential on E; the property [d,d] = 0 is
immediate since it holds on generators. Similarly, if (g,d) is a (graded, fil-
tered) differential Lie algebras, thn the enveloping algebra U(g) is a (graded,
filtered) differential algebra.

3. Homotopies

Let Ex = K[0]®K[—1], where K[0] is spanned by a generator ¢ and K[—1]
by a generator t. Then Ex is a graded differential space, with differential

dt =1, di=0.

The symmetric algebra over Ex is the commutative graded differential al-
gebra S(Ex) = K[t, dt], with generators ¢ of degree 0 and dt of degree 1 and
with the single relation (dt)? = 0. A general element of this algebra is a
finite linear combination

(67) y=> apth +) pt'dt
k l

with ag, by € K. Let 7o, 71 : K[t, dt] = K be the morphisms of differential
algebras, given on the element (67) by

mo(y) = ao, mi(y) = Zak.
k

One can think of K[t, dt] as an algebraic counterpart to differential forms on
a unit interval, with mg, 71 the evaluations at the end points. In the same
spirit, we can define an “integration operator” J: K[t,dt] — K,

Zaktk—i-Zbltdt lill

This satisfies

LEMMA 3.1 (Stokes’ formula). The integration operator J: K[t, dt] — K
has the property J o d = m — 7.
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3. HOMOTOPIES

PROOF. Fory =73, apth + 2150 bittdt,

J(dy) = T kapt*'dt) = " ag = (m — 70)(y). O

k>0 k>0

DEFINITION 3.2. A homotopy between two morphisms ¢g, ¢1: E — E’
of (graded, filtered) differential spaces (F,d), (E’,d’) is a morphism

¢: E—K[t,dt] @ E'

such that ¢g = (mg ® 1) 0 ¢ and ¢1 = (71 ® 1) o ¢. In this case, ¢, 1 are
called homotopic.

For instance, the two projections mp, 7 : K[t,dt] — K are homotopic:
the identity morphism of K][t,dt] gives a homotopy. Homotopies can be
composed: If

¢: E—K[t,dt]| @ E', ¢: B - K[t,dt] @ E”
are homotopies between ¢g, ¢1: E — E’ and vg,11: E' — E”, respectively,
then
(1®vY)o¢: E— K[t,dt]|  K[t,dt] @ E”,
followed by multiplication in K[t,d¢t], is a homotopy ¢ * ¢ between g o ¢g

and ¥ 0¢;. Note that the composition * is associative. Let us write ¢g ~ ¢1
for the relation of homotopy of morphisms of differential spaces.

PROPOSITION 3.3. The relation ~ of homotopy of cochain maps between
differential spaces E, E' is an equivalence relation.

PROOF. If ¢g: E — E'is a cochain map, then ¢ ~ ¢ by the homotopy
p=i®¢o: E = K FE — K[t,dt] ® E', where i: K — K[t,dt] is the
inclusion of scalars. Hence ~ is reflexive. Too see that it is symmetric,
note that the graded differential algebra K[t, dt] carries an involution, given
on generators by ¢t — 1 — ¢, dt — —d¢t. This involution intertwines the
two morphisms g, 71 : K[t,dt] — K. Hence, if ¢9 ~ ¢1: E — E’ by the
homotopy ¢: E — K[t,dt] ® E’, then ¢1 ~ ¢¢ by the composition of ¢
with this involution. Finally, since one can add and subtract homotopies,
Po ~ ¢1: E — E' and ¢1 ~ P2 E— E imply

b0 = o+ 1 — P1 ~ P1 + P2 — P1 = Po.
This shows that ~ is transitive. U
Homotopies are often expressed in terms of homotopy operators.

DEFINITION 3.4. A homotopy operator between ¢g, ¢1: E — E’ of dif-
ferential spaces (E,d), (E’,d’) is an odd linear map h: E — E’ with

h0d+d/0h:¢1—¢0.

In the graded (resp. filtered) case, one requires that h has degree (resp. fil-
tration degree) —1.
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For instance, the integration operator J: K[t,dt] — K is a homotopy
operator between g, 1.

PROPOSITION 3.5. Two morphisms ¢o, ¢1: E — E’ of differential spaces
are homotopic if and only if there exists a homotopy operator. In this case,
the induced maps in cohomology are the same: H (o) = H(¢1).

PROOF. A homotopy operator h defines a homotopy ¢: E — K[t, dt|QE’

by
¢(z) = dt h(z) + té1(z) + (1 —t)do(z).

Conversely, given a homotopy ¢ between ¢, ¢1, the formula
defines a homotopy operator. The equation for the homotopy operator shows
in particular that ¢g — ¢ takes ker(d) to im(d'). That is, H(¢o) — H(¢1) =
H(¢pp — ¢1) = 0. O

DEFINITION 3.6. Two morphisms ¢: F — E’ and ¢: £/ — E are called
homotopy inverses if

$o ~idp, Yoo~ idp

A morphism ¢ admitting a homotopy inverse 1 is also called a homotopy
equivalence.

In this case, H(¢) induces an isomorphism in cohomology, with inverse
H(1)).

ExAMPLE 3.7. Let i: K — K]|t,dt] be the inclusion of scalars, and
7: K[t,dt] — K the augmentation map €(3", axt® + >, bjt'dt) = ag. Then
€ o4 =idg. Let h be ‘integration from 0 to ¢,

by
h(D apt® +> btldt) =)
(ka"“ +l it i) I+1
Then hd + dh = id —i o ¢, showing that ¢ is a homotopy equivalence, with €

its homotopy inverses. That is, the differential algebra K[t, dt] is acyclic.

4. Koszul algebras

Given a (graded, filtered) super vector space V, we obtain a (graded,
filtered) differential space By =V ® Ex. For v € V| we will write v®t =: v
and v ® t =: U; hence By =V @ V[—1] with differential dv = v, dv = 0. It
is characterized by the universal property that if E is a (graded filtered) dif-
ferential space, then any morphism V' — E of (graded, filtered) super spaces
extends uniquely to a morphism Ey — E of (graded, filtered) differential
spaces. Note that Ey has zero cohomology, since im(d) = V[—1] = ker(d).

DEFINITION 4.1. The differential algebra S(Ey ) will be called the Koszul
algebra for the (graded, filtered) super vector space V.

It is characterized by a universal property:
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PROPOSITION 4.2 (Universal property of Koszul algebra). For any com-
mutative (graded, filtered) differential algebra (A, d), and any morphism of
(graded, filtered) super vector spaces V. — A, there is a unique extension to
a homomorphism of (graded, filtered) differential algebras S(Ey) — A.

PRrROOF. The morphism V' — A of super vector spaces extends uniquely
to a morphism Ey = V @ V[—1] — A of differential spaces. In turns, by
the universal property of symmetric algebras (Appendix A, Proposition 1.3)
it extends further to a morphism S(Ey) — A of super algebras; it is clear
that this morphism intertwines differentials. ([

One can also consider a non-commutative version of the Koszul algebra,
using the tensor algebra T'(Ey ) rather than the symmetric algebra. Using
the same argument as for S(Ey ), we find:

PROPOSITION 4.3 (Universal property of non-commutative Koszul alge-
bra). For any (graded, filtered) differential algebra (A, d) and any morphism
of (graded, filtered) super vector spaces V. — A, there is a unique extension
to a morphism of (graded, filtered) differential algebras T'(Ey) — A.

The Koszul algebras S(E), T(E) play the role of ‘contractible spaces’ in
the category of commutative, non-commutative differential algebras. In fact
one has:

THEOREM 4.4. Let A be a (graded, filtered) differential algebra. Then any
two morphisms of (graded, filtered) differential algebras ¢o,¢1: T(Ey) —
A are homotopic. If A is commutative, then any two homomorphisms of
(graded, filtered) differential algebras ¢o, ¢1: S(Ey) — A are homotopic.

PROOF. We present the proof for T'(Ey ). (The proof for S(Ey) is par-
allel.) Define a linear map

¢: V= K[t di] @ A, ¢(v) = (1 = t)¢o(v) + tr(v),
and extend to a morphism of differential algebras
¢: T(BEy) — K[t,dt] @ A

by the universal property of the Koszul algebra. Then ¢; = (m; ®1)0¢, since
both sides are morphisms of differential algebras T'(Ey) — A that agree on
V. O

COROLLARY 4.5. The non-commutative Koszul algebra T(Ey ) is acyclic.
That is, the augmentation map e: T(Ey) — K and the unit i: K — T(Ey)
are homotopy inverses. Similarly the commutative Koszul algebra S(Ey) is
acyclic.

PRrROOF. We have to show that ioe: T(Ey) — T(Ey) is homotopic to
id: T(Ey) — T(Ey). But according to Theorem 4.4, any two morphisms of
differential algebras T'(Ey) — T'(Ey ) are homotopic. The proof for S(Ey)
is parallel. O
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In particular, the unit maps i: K — S(Ey), T(Ey) define isomorphisms
of the cohomology algebras of S(Ey ), T(Ey) with K.

REMARK 4.6. Suppose that the (graded, filtered) super vector space
V' carries a representation of a Lie algebra g. Then the action of g on
Ey commutes with the differential, and so does its derivation extension to
S(Ey) and to T(Ey). The homotopy equivalences considered above are all
g-equivariant, In particular, it follows that the g-invariant parts S(Ey )? and
T(Ey)? are acyclic.

5. Symmetrization

Suppose FE is a (graded, filtered) super vector space, A is a (graded
filtered) super algebra (not necessarily commutative), and ¢: E — A is a
morphism of (graded, filtered) super vector spaces. Then ¢ extends canon-
ically to a morphism of (graded, filtered) super vector spaces

sym(¢): S(E) — A,

by super symmetrization: For homogeneous elements v; € F,

1 TRV
v D ()N G u ) - pvg-r ).

’ EISGR

Here Ng(vi,...,vg) is the number of pairs i < j such that v;,v; are odd
elements and s~1(i) > s~!(j). (The sign is dictated by the super sign con-
vention.) If the super algebra A is commutative, this is the unique extension
as a morphism of super algebras. For the special case A = T'(E), the sym-
metrization map is the inclusion as ‘symmetric tensors’, and the general
case may be viewed as this inclusion followed by the algebra homomorphism
T(E)— A.

The symmetrization map can also be characterized as follows. Let e; be
a homogeneous basis of E, and let 7% be formal parameters, with 7% even or
odd depending on whether e; is even or odd. Then

i k i k
sym(g) (Y rle)” = (D r'o(es))
for all k. Equivalently
syin(9) (¢517) = 27,
as an equality of formal power series in the ;.

LEMMA 5.1. Let E be a super vector space, and S(E),T(E) the symmet-
ric and tensor algebras respectively. Let Dg, D be the derivation extensions
of a given (even or odd) endomorphism of D € End(E). Then the inclusion
S(E) = T(FE) as symmetric tensors intertwines Dg, Dr.

ProoF. This follows since the action of D on T*(E) commutes with the
action of the symmetric group &g, and in particular preserves the invariant
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subspace. For k = 2, with T € Gy the transposition, this is checked by the
computation

T Dr(vy @ vy) =T (Dvy ® vg + (—1)|D”U1|v1 ® Duvsy
= (—1)lleelHPlely) @ Doy + (—1) P2 Doy @ 0

— (—1)‘”1””2|DT(112 ® v1)
= DTT(Ul & Uz).

The general case is reduced to the case k = 2, by writing a general element
of &} as a product of transpositions. O

PROPOSITION 5.2. Suppose A is a differential algebra, E o differential
space, and ¢: E — A is a morphism of differential spaces. Then the sym-
metrized map sym(¢): S(E) — A is a morphism of differential spaces.

PrOOF. By Lemma 5.1, the inclusion S(E) — T'(F) is a morphism of
differential spaces, hence so is its composition with T'(E) — A. O

As a special case, if V is a super vector space, the symmetrization map
for Koszul algebras S(Ey) — T'(Ey) is a morphism of differential spaces.

PROPOSITION 5.3. The quotient map w: T(Ey) — S(Ev) is a homotopy
equivalence of graded differential spaces, with homotopy inverse given by
symmetrization sym: S(Ey) — T(Ey).

PROOF. Since 7 o sym is the identity, it suffices to show that sym o is
homotopic to the identity of T'(Ey). Let ¢g,¢1: T(Ey) — T(Ey) ® S(Ey)
be the two morphisms of differential algebras  — z ® 1 and = — 1 ® .
By Theorem 4.4, ¢q, ¢1 are homotopic in the category of graded differential
spaces. Let ¢¥: T(Ey) ® S(Ey) = T(Ey), x @ y — xsym(y). Then ¢ is a
morphism of graded differential spaces. We have

Yo gy =idpm,), ¢ o¢1 =symor.

6. g-differential spaces

Differential algebras may be thought of as a generalization of differential
forms on manifolds. Viewed in this way, the g-differential algebras discussed
below are a generalization of differential manifolds on a manifolds with a g-
action. The concept of a g-differential algebra was introduced by H. Cartan
in [18, 19].

Let g be a Lie algebra. Recall the graded differential Lie algebra g[1] x g
introduced in Example 1.5.

DEFINITION 6.1. A (graded, filtered) g-differential space is a (graded, fil-
tered) differential space (E, d), together with a representation of the (graded,
filtered) differential Lie algebra g[1] x g.
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Here, ‘representation’ is understood in the category of (graded, filtered)
differential spaces: In particular, the action map (g[l] ¥ g) ® E — E inter-
twines the differentials. Letting «(¢) € End'(E), L(¢) € End®(E) be the
images of I¢, L¢ € g[1] x g under the representation, we find that the axioms
of a g-differential space are equivalent to the following super commutator
relations,

[d,d]=0
[(€),d] = L(¢£)
[L(£),d] =0

[L(€), L(C)] = L([¢, <))
[L(€), (O] = w([€:<])
[(£), (O] =0

For a graded (resp. filtered) g-differential space, the operators d, L(&), ¢(§)
have degree (resp. filtration degree) 1,0, —1.

EXAMPLE 6.2. If V is a (graded, filtered) vector space with a representa-
tion p: g — End(V'), then the differential space structure of Ey = V@V ]—1]
extends uniquely to a that of a (graded, filtered) g-differential space, in such
a way that L(§)v for v € V is the given representation and ¢(§)v = 0. (The
formulas on v € V[—1] are determined by the commutator relations.)

REMARK 6.3. View K[—1] as a commutative graded super Lie algebra,
with generator D of degree 1. A (graded, filtered) differential space may be
regarded as a representation of K[—1], in the category of (graded, filtered)
super spaces, with D represented as the differential. Since the action of D
on g[1] x g is by super Lie derivations, we can form the semi-direct product
(g[1]xg)xK[—1]. Tt is a graded Lie superalgebra, where the bracket relations
between generators D, I¢, L¢ are similar to the commutator relations be-
tween d, ¢(€), L(&), as listed above. Hence, a (graded, filtered) g-differential
space may also be viewed as a representation of (g[1] x g) x K[—1], in the
category of (graded, filtered) super spaces.

REMARK 6.4. The condition [L(),d] = 0 says that each L(§) is a cochain
map. The condition [¢(§),d] = L(§) shows that these cochain maps are all
homotopic to 0, with ¢(£) as homotopy operators. In particular, L(§) induces
the 0 action on cohomology.

Direct sums and tensor products of g-differential spaces are defined in
an obvious way, making the category of g-differential spaces into a tensor
category. We may hence consider algebra objects, coalgebra objects, Lie
algebra objects, and so on. For instance, a g-differential (Lie) algebra is a
g-differential space, which is also a super (Lie) algebra, such that d, L(£), ¢(§)
are super (Lie) algebra derivations.
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ExAMPLE 6.5. The differential Lie algebra g[1] x g is an example of
g-differential Lie algebra. (The action of g[1] x g is just the adjoint repre-
sentation.)

EXAMPLE 6.6. Suppose K = R, and let M is a manifold. An action of
the Lie algebra g on M is a Lie algebra homomorphism g: g — X (M) into
the Lie algebra of vector fields on M. Given such an action, the algebra
A = Q(M) of differential forms becomes a g-differential algebra, with d the
de Rham differential, and ¢(§) and L(&) the contractions and Lie derivatives
with respect to the vector fields o(§).

Below we will encounter many other examples of g-differential algebras.

DEFINITION 6.7. Let E be a (graded, filtered) g-differential space. One
defines the basic subspace Fr,s to be the (graded, filtered) differential sub-
space, consisting of all x € E with «(§)z = 0 and L(§)z = 0 for all {. One
calls

Hbas(E) = H(Ebas> d)

the basic cohomology of E.

Equivalently, Ey,s is the subspace fixed by the action of g[1] x g. A
morphism of g-differential spaces F; — FE5 induces a morphism of differential
spaces (F1)pas — (F2)pas, hence of the basic cohomology.

We also define the invariant subspace Ei,, = E® to be the subspace
annihilated by all L(&), and the horizontal subspace Eyq to be the subspace
annihilated by all ¢(£). Thus Epas = Enor N E9%. Note however that the
horizontal subspace is not a differential subspace, in general.

DEFINITION 6.8. A connection on a (graded, filtered) g-differential al-
gebra A is an odd linear map (of degree 1, filtration degree 1)
f:g"— A
with the properties,
(1) 0 is g-equivariant: O(L(§)p) = L(£)0(p),
(2) (&)0() = (1, €)-
A g-differential algebra admitting a connection is called locally free.
EXAMPLE 6.9. The g-differential algebra Q(M) of differential forms on

a g-manifold M is locally free if and only if the g action on M is locally free,
that is, £ # 0 implies that the vector field o(§) € X(M) has no zeroes.

The following is clear from the defnition:

PROPOSITION 6.10. Let A be a (graded, filtered) g-differential algebra.
If A is locally free, then the space of connections on A is an affine space
with Hom(g*[—1], Anor)? as its space of motions.

Here Hom denotes the space of morphisms of (graded, filtered) super
spaces.
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The curvature of a connection is an even map g* — A of degree 2,
defined by the formula

F’=d60+19,0],
where we view 6 as an element of A ® g. Equivalently, if e, is a basis of g,
with dual basis e* of g*, and writing 6 = ) 0%, with 6% € A, we have
F9 =% (F%)%, with
(F%)* = do* + 1 fe06°.

The curvature map F?: g* — A is g-equivariant, and it takes values in Apoy.
That is, it defines an element of Hom(g*[—2], Apor)®.

7. The g-differential algebra Ag*

Let g be a finite-dimensional Lie algebra, and Ag* the exterior algebra
over the dual space. As explained in §2.1.2, the space of graded derivations
is

Der(Ag") = Hom(g", Ag"),
since any derivation is determined by its values on generators. In particular,
Der!(Ag*) = Hom(g*, A%g*). Let

d € Hom(g*, A*g*)

be the map dual to the Lie bracket [-,-]: A% g — g. That is, for u € g* and
1,62 € 9,
(68) (&1)e(&2)dp = (u, [&1, &)

Then (Ag*,d) is a graded differential algebra. To see that d? =0, it suffices
to check on generators. It is actually interesting to consider the derivation
d defined by an arbitrary linear map [-,-]: A2 g — g (not necessarily a Lie
bracket). Define the Jacobiator Jac: g* — A3g* by

u(€1)e(€2)e(&3) Jac(p) = (u, €1, [S2, &3]] + (€2, [€3, &1]] + (€3, [€1, &2]]),

so that [-,+] is a Lie bracket if and only if Jac = 0. Extend to a derivation
Jac € Der?(Ag*)

PROPOSITION 7.1. Let g be a finite-dimensional vector space, and let

d € Der(Ag*) be defined by duality to a linear map (bracket) [-,-]: A2g — g.
Then d is a differential if and only if [-,-] is a Lie bracket. In fact,
@ = Jac

where Jac is the Jacobiator of the bracket.

PROOF. Define L(¢) € Der’(g) by L(¢) = [d,¢(¢)]. Thus (L(&)u, () =
—(u, [£,¢]) for all p € g*,&,¢ € g. Checking on generators, we find

[L(€), Q)] = e([&, €D)-
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The square of d is a derivation, since it may be written d? = %[d, d]. To find
what it is, we compute

v(§1)e(€a)ddp = 1(§1)(L(&2) — de(&2))dp
= (&1, &) d + L(&)e(&1)d — ¢(£1)dL(&2) ) 1
= (L([€1,&]) + L(&)L(&) — L(&1)L(&)) .

Hence

t(€1)e(2)e(€3)ddp = (&3)e(€1)e(&2)ddp
= (i, [€3, [€1, &2]] + [[€3, &2l €] — [[€3, &1], &al)
= 1(&1)e(82)e(83) Jac(p).
O

Suppose for the remainder of this Section that g is a Lie algebra, so
that Jac = 0. The cohomology algebra H(Ag*,d) is called the Lie algebra
cohomology of g, and is denoted H(g). We will frequently denote the differ-
ential on Ag* by d. Using dual bases e, € g and e* € g*, the Lie algebra
differential may be written

(69) dy=3) e oL(ea),

(with e* acts by exterior multiplication), as is checked on generators. In
particular, the g-invariants (Ag*)? are all cocycles, defining a morphism of
graded algebras
(Ag")? — H(g).

For g reductive, this map is known to be an isomorphism. (See e.g. [?]. If
K =R, and g is the Lie algebra of a compact, connected Lie group, it follows
by a simple averaging argument that the inclusion (Ag*)® = (Ag*)¥ < Ag*
induces an isomorphism in cohomology.)

REMARK 7.2. Suppose K = R, and g is the Lie algebra of a Lie group G.
The identification of g with left-invariant vector fields dualizes to an iden-
tification of g* with left-invariant 1-forms. This extends to an isomorphism
of Ag* with the algebra of left-invariant differential forms on G, and the
Chevalley-Eilenberg differential corresponds to the de Rham differential un-
der this identification. If G is connected, then (Ag*)? = (Ag*)¥ is identified
with the bi-invariant forms on G.

REMARK 7.3. Let f2 = (e% [ep, ec]) be the structure constants of g
relative to the given basis. Then the differential on Ag* reads,

dp = —1 febecu(eq).

To summarize, the exterior algebra Ag*, with the Lie algebra differential
da, and with the usual Lie derivatives and contraction operators, is a graded
g-differential algebra. The horizontal and basic subspace of Ag* consists of
the scalars, hence the basic cohomology is just K. The map 6: g* — Ag*
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given as the inclusion of Alg*, is the unique connection on Ag*; the curvature
is zero (since (A2g*)por = 0).
More generally, suppose Ly : g — End(V) is a g-representation on a
vector space V. Let
C*(g,V) = V @ Ag"
with grading induced from the grading on the exterior algebra, and define
the (Chevalley-Eilenberg) differential

(70) dep =) Ly(ea) ® " +1@d,

Then (C*(g,V),dcE) is a graded differential space. The cohomology groups
of the complex C*(g, V) are denoted H*(g, V). Note that

H'(g,V)=V?.

With the Lie derivatives L(§) = Ly (§) ® 1 +1® LA(§) and contractions
L&) = 1®1a(&), the complex C*(g, V') becomes a graded g-differential space.
The basic subcomplex is V¥ with the zero differential.

8. g-homotopies
We next generalize the definition of homotopies:
DEFINITION 8.1. Let ¢g, ¢1: E — E’ be morphisms of (graded, filtered)
g-differential spaces.
(1) A g-homotopy between ¢g, ¢1 of is a morphism of (graded, filtered)
g-differential spaces ¢: E — K[t,dt] ® E' with
po=(mo®1)0¢, $p1=(m ®1)0 .
(2) A g-homotopy operator between ¢g, ¢1 is morphism of (graded, fil-
tered) super spaces h: E[1] — E’ such that
hou€) +(€)oh =0,
h0d+d/0h:¢1 — @p.

Thus h is odd (of degree —1 in the graded or filtered cases). The defini-
tion of h implies that it intertwines Lie derivatives as well:

[h, L(§)] = [h, [d, (§)]]
= Hha d]a [’(5)] - [da [h’a L(g)ﬂ
= [¢1 — ¢o,(§)] = 0.
(By a small abuse of notation, we wrote [h, L(§)] for h o L(§) — L' (&) o h,
etc.) In other words, a g-homotopy operator h is a homotopy operator such
that the map h: E[1] — E’ is g[1] x g-equivariant.
The discussion of homotopies in Section §6.3 extends to the case of g-

homotopies, with the obvious changes. In particular, the same argument as
for Proposition §6 3.5 shows that ¢g, ¢1 are g-homotopic if and only if there
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is a g-homotopy operator. In this case, the maps in basic cohomology are
the same:

Hbas(¢0) = Hbas(ﬁbl): Hbas(E) — Hbas(E/)-
9. The Weil algebra

Consider the Koszul algebra for g*[—1],
S(Eg-[-1]) = S(g") @ Ag")-

As before, we associate to each pu € g* the degree 1 generators pu € g*[—1] =
Alg* and the degree 2 generators i € g*[—2] = S1g*, so that du = 71, djz = 0.
The coadjoint g-representation on g* defines a representation on FEg«, com-
muting with the differentia. The resulting g-representation by derivations of
S(Eg+[—1]) is the tensor product of the co-adjoint representations on S(g*)
and A(g*); the generators for the action will be denoted L(¢). To turn
S(Eg+[—1]) into a g-differential algebra, we need to define the contraction
operators. The action of +(£) on f is determined:

WO = u(§)dp = L(Ep — du(p = L(E)p-
On the degree 1 generators, it is natural to take (&) = (i, ). It is straight-
forward to check the relations involving ¢(£) on generators, so that we have
turned S(FEy+[—1]) into a Z-graded g-differential algebra. 2

DEFINITION 9.1. The graded g-differential algebra
Wg = S(Eg[-1])
is called the Weil algebra for g.

As a special case of Corollary §6.4.5 (and the subsequent Remark) we
have,

ProrPOSITION 9.2. The Weil algebra W, as well as its g-invariant part
(Wg)8, are acyclic differential algebras.

ProposITION 9.3. The Weil algebra is locally free, with connection
Ow:g" — Wg, u— p.
The curvature of the connection on Wy is given by
FO . g* — W2, pes i — da(p).

PRrOOF. It is immediate that Oy () = p is a connection.
In terms of a basis of g, the components of the connection 1-form on Wy
are 07, = e%; hence those of the curvature form are

(F9W)e = de® + %Z f,;lcebec = de®* — dpe®.
be

O

2More generally, for any x € Hom(g, g)?, one obtains a g-differential algebra by
putting +(§)p = (u, K(8))-
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REMARK 9.4. We may verify directly that 7 — da () is horizontal:
W& — da(p) = L(§)p — La(p) + da(e(§)p) = 0,

since L(§) agrees with L (&) on Ag* C W, and since d, vanishes on scalars.
(Thus @ — dap is the horizontal projection of & — this gives an alternative
proof of the curvature formula.)

By definition, the Weil algebra Wg is a tensor product Wg = Sg* ® Ag*
where Sg* is the symmetric algebra generated by the variables & and Ag*
is the exterior algebra generated by the variables u. It is often convenient
however, to replace the generators p, i with generators pu, iz, where

fi =i —dapu € W?g.

are the curvature variables. Thus, we obtain a second identification of Wy
with Sg* ® Ag", where now Sg* is the symmetric algebra generated by the
variables [i.

The main advantage of this change of variables is that the contraction
operators simplify to

W& = (&), (&)n=0.

THEOREM 9.5. The horizontal and basic subspaces of the Weil algebra
Wy are

(W@)hor = 587, (Wa)bas = (S87)g;
where Sg* is the symmetric algebra generated by the variables . The dif-
ferential on the basic subcomplex is just 0, so

Hyas(Wg) = (Sg7)°.

PROOF. The description of the horizontal and basic subspaces is imme-
diate. Since the basic subcomplex (W g)pas only contains elements of even
degree, its differential is zero, hence the complex coincides with its cohomol-
ogy. ([l

We should still describe the differential of Wg in the new variables.

THEOREM 9.6. Identify Wg = Sg*® Ag*, where Ag* is the exterior alge-
bra generated by the variables i, and Sg* is the symmetric algebra generated
by the variables [i. Let dog be the Chevalley-FEilenberg differential (70) for
the g-module Sg*, and di the Koszul differential relative to the generators
Wy ft, that is, dxp = 1, dgp = 0. Then the super derivations dog, dg
commute, and the Weil differential is their sum:

d= dg + dcE.
Proor. For all p € g*, we have
dp=p=p+dr(p) =dxp+depu
dji = =d(dap) = Y L{edp @ ' = dewfi = (dx +dop)fi

7
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This gives the equality of derivations d = dg +dcg on generators, and hence
everywhere. The fact that dx,dor commute follows since 0 = d? — d%{ -
d?.p = dgdep + dopdk. 0

REMARK 9.7. The automorphism of Sg* ® Ag*, given on generators by
Wy %ﬁ, for r # 0, intertwines Lie derivatives and contractions, and
takes d to the differential

d") = rdx + dog.

Let (Wg)") = Sg* ® Ag* be the family of g-differential algebras with the
derivations d("), .(€), L(€). For r # 0 these are all isomorphic, but for r = 0
the family degenerates to the Chevalley-Filenberg complex for the g-module
Sg*. Later, we will find it convenient to work with r = 2.

10. Chern-Weil homomorphisms

The Weil algebra is universal among commutative g-differential algebras
with connection.

PROPOSITION 10.1 (Universal property of the Weil algebra). For any
commutative (graded, filtered) g-differential algebra A with connection 64,
there is a unique morphism of (graded, filtered) g-differential algebras

(71) c:Wg— A
such that co Oy = 0 4.

PROOF. Suppose A is a commutative g-differential algebra with connec-
tion. By the universal property of Koszul algebras, the map : g* — A!
extends uniquely to a homomorphism of differential algebras c: Wg — A.
The calculation

= L()0(n) — du(§)0(n)

= 0(L(Ep) — A, &)

= c(L(Op) = c(u(&)R),
together with ¢(&)c(p) = ¢(£)0(pn) = (1, &) = c(e(§)w), shows that ¢ inter-
twines contractions. Since L(§) = [¢(§),d], it intertwines Lie derivatives as
well. g

The homomorphism c is called the characteristic homomorphism for the
connection 6.

ExAMPLES 10.2. (1) The connection §, on the commutative g-differential
algebra A = Ag* defines a morphism of g-differential algebras
(72) Wg — Ag*.

This is the map taking the generators i to zero.
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(2) For any commutative g-differential algebra A, the tensor product
Wg ® A carries a connection fy ® 1. This defines a morphism
Wg—Wg® A, w— w® 1, and hence a map in basic cohomology

(S9")? = Hpas(Wg) = Hpas(Wg® A).

The argument from the proof of Theorem 4.4 extends to the case of
g-differential algebras.

THEOREM 10.3. If A is a commutative (graded, filtered) g-differential al-
gebra, any two morphisms of (graded, filtered) g-differential algebras co,c1: Wg —
A are g-homotopic.

ProOOF. Let 6y,01: g* — A be the connections defined by the restric-
tions of cg, c;. Then

0= (1—1t)0y+ toy
is a connection on K[t,dt] ® A, and its characteristic homomorphism
c: Wg = K[t,dt] @ A
is the desired g-homotopy. ([
As an immediate consequence, if A is a commutative g-differential alge-

bra admitting a connection 6, then the resulting algebra homomorphism in
basic cohomology

(73) (Sg")? = Hpas(Wg) = Hpas(A)
is independent of the connection.

DEFINITION 10.4. let A be a g-differential algebra with connection. The
resulting algebra homorphism

(5¢%)% = Hyas(A)

is called the Chern-Weil homomorphism.

REMARK 10.5. This terminology goes back to the differential geometry
of principal bundles. Let G be a Lie group, and P — B a principal G-
bundle with G-equivariant connection 6: g* — Q!(P). In this case, the basis
subcomplex Q(P)y,s of G-invariant, g-horizontal elements is isomorphic to
the de Rham complex Q(B). The elements in Hgyerham(B) = H(2(B))

obtained as images under the Chern-Weil homomorphism are called the
characteristic classes.

PRrROPOSITION 10.6. Let A be a commutative g-differential algebra with
connection, and denote by c: Wg — A the characteristic homomorphism.
Then the map

P Wg A=A wz - c(w)x
is a g-homotopy equivalence, with g-homotopy inverse the inclusion,

PV:A->WgR A z— 1R .
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PROOF. Clearly, ¢ o ¢ = id4. On the other hand, (¢ o ¢) (w ® x) =
1®c(w)z. Let 19, 71: Wg — Wg® A be the characteristic homomorphisms
for the connections g = 1 ® 04 and 6 = Oy ® 1 on Wg ® A. Thus
T(w) =1® c(w), 71(w)=w® 1. We have

o ¢ = (idwy ®ma) o (@ ida),
idwgea = (idwg @ma) o (11 ®ida),
where m 4 is the multiplication in .A. By Theorem 10.3, 79 is g-homotopic to

71. Since g-homotopies can be composed, it follows that ¥ o ¢ is g-homotopic
to ide@A. O

11. The non-commutative Weil algebra Wg

The Weil algebra Wg = S(Eg+[—1]) is characterized by its universal
property among the commutative g-differential algebras with connection.
To obtain a similar universal object among non-commutative g-differential
algebras with connection, we only have to replace the super symmetric alge-
bra with the tensor algebra. As a differential algebra, Wg = T'(Eg[—1]), is
the non-commutative Koszul algebra (cf. §6.4), freely generated by degree
1 generators p and degree 2 generators fi. The formulas for the contractions
are given on generators by just the same formulas as for Wg:

W= (&), U= LE)p
DEFINITION 11.1. The graded g-differential algebra
WQ =T (Eg[-1])
is called the noncommutative Weil algebra.>

Most of the results for the commutative Weil algebra carry over to the
non-commutative case, with essentially the same proofs (simply replace W
with ). We will not repeat the proofs, but just state the results.

(1) The non-commutative Weil algebra Wg is locally free, with con-
nection
O 9" — Wg, p— p.
(2) Given a (graded, filtered) g-differential algebra A with connection

0 4, there is a unique morphism of (graded, filtered) g-differential
algebras

c:Wg— A
such that co 6y = 64. (Cf. Proposition 10.1).
(3) Given a (graded, filtered) g-differential algebra A, any two mor-
phisms of (graded, filtered) g-differential algebras cg,c1: Wg — A

3The algebra Wy is different from the noncommutative Weil algebra Wg of [4], which
we will discuss below under the name of quantum Weil algebra.
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are g-homotopic. (cf. Theorem 10.3) We hence see that for a non-
commutative g-differential algebra A with connection, algebra ho-
momorphism

Hbas(Wg) — Hbas(-A)7

induced by characteristic homomorphism ¢: Wg — A does not de-
pend on the connection. Theorem 11.3 below shows that Hbas(Wg) =
(Sg*)?; hence we have generalized the Chern-Weil homomorphism
to the non-commutative setting.

(4) Let A be a g-differential algebra with connection, and let ¢: Wg —
A be the characteristic homomorphism. Then the map

P Wg A= A, wez s c(w)z
is a g-homotopy equivalence, with g-homotopy inverse the inclusion,
V: A= Wg A, x+— 1® z. (cf. Proposition 10.6).

In the commutative case, we found that the horizontal subalgebra of
Wg is the symmetric algebra generated by the curvature variables fi. As a
consequence we could read off that Hyp.s(Wg) = (Wg)bas = (Sg*)?. This
aspect of Wg does not carry over to Wg, and changing the variables to u, fi
does not appear useful. We will show however that the quotient map

Wg—)Wg

(the characteristic homomorphism for Wy, regarded as a non-commutative
g—differential algebra) is a g-homotopy equivalence. In particular, this will
show Hy.s(Wg) = (Sg*)®.

ProrosiTiON 11.2. The map
(74) Wg = S(Bg[-1]) = Wg = T(Eg[-1])

gwen by the inclusion of symmetric tensors (i.e. the extension of Eg«[—1] —
T(Eg[—1]) by symmetrization) is a morphism of g-differential spaces.

Proor. The proof is similar to that of Proposition §6.5.2. However, in
this case Lemma §6.5.1 does not immediately apply, since the differential
space Eg+[—1] is not a g-differential space. Instead, consider the graded
vector space

Eg[-1] @ Kc
where c is a generator of degree 0. It carries the structure of a graded g-
differential space, with the given differential and Lie derivative on Eg[—1],
with ¢(&)p = (1, &)c, (§)m = L(§)p, and with trivial action of ¢(§), L(£),d
on c. We have,

(75) Wg=SEq[-1]dKe)/ <c—1>.

Let Eg:[—1] @ Kc — Wg be the map given by the inclusion of Eg«[—1] on
the first summand, and by the map c — 1 on the second summand. This
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map is a morphism of g-differential spaces; hence Lemma 5.1 shows that it
extends to a map of g-differential spaces

S(Eg[—-1] @ Kc) — W.
The ideal in S(Ey-[—1] @ Kc) generated by c—1 is a g-differential subspace,

contained in the kernel of this map. Since ‘symmetrizing’ and ‘setting c
equal to 1’ commute, this is the same as the map (74). O

THEOREM 11.3. The quotient map ¢: Wgﬁ Wg is a g-homotopy equiv-
alence, with homotopy inverse : Wg — Wg given by symmetrization,

S(Eg-[-1]) = T(Eg[-1]).

PRrROOF. The proof is parallel to that of Proposition 5.3. The main point
is that the two morphisms cg,c1: Wg — Wg ® Wg given by

cow)=wel, c(w) =1 ¢(w)

are the characteristic homomorphisms for the two natural connections on
Wg ® Wg. Hence they are g-homotopic (Property (3) above), and so is
their composition with

WgoWg— Wg, wew — wsym(w') O

COROLLARY 11.4. The quotient map Wg — Wy induces an isomor-
phism Hyas(Wg) = (5g7)°.

12. Equivariant cohomology of g-differential spaces

DEFINITION 12.1. The equivariant cohomology of a g-differential space
E is the cohomology of the basic subcomplex of Wg ® E:

(76) Hy(E) = Hywe(Wa @ B).

The left multiplication of (Wg)pas = (Sg%)% on (Wg® E)pas gives Hy(F)
the structure of a module over (Sg*)e.

If A is a g-differential algebra, then Wg ® A is a g-differential algebra,
hence Hy(A) inherits a super algebra structure. Similarly, if a g-differential
space E is a module over the g-differential algebra A, then Hy(FE) becomes
a module over Hy(A).

REMARK 12.2. By Theorem 11.3, one can replace Wg with Wg in the
definition of Hy(FE). If A is a g-differential algebra, the resulting product on
Hy(A) does not depend on the use of Wg or Wy in its definition. Indeed,
since the quotient map Wg® A — Wg® A is a super algebra morphism,
the induced isomorphism in basic cohomology is a super algebra morphism.

ExaMpLE 12.3. If g is a real Lie algebra, and M is a g-manifold, the
cohomology group Hy(M) = Hy(2(M)) is called the equivariant de Rham
cohomology of M. Suppose g is a Lie algebra of a compact Lie group G,
that M is compact, and that the action of g integrates to an action of G
on M. According to a Theorem of H. Cartan [19], Hy(M) coincides in this
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case with the equivariant cohomology Hg(M,R) = H(EG xg M,R). Thus,
Wg, Wg may be thought of as algebraic counterparts to the classifying
bundle FG.

ProPOSITION 12.4. If A is a g-differential algebra admitting a connec-
tion, then its equivariant cohomology (cf. (76)) is canonically isomorphic to
its basic cohomology: Thus

HQ(A) = HbaS(-A)
as super algebras.

PROOF. The g-homotopy equivalence A — Wg® A, = — 1@z (cf. §6.11
(4)) restricts to a homotopy equivalence of the basic subcomplexes, hence
to an isomorphism Hyp,s(A) — Hg(A). O

This result admits a generalization to (graded, ﬁltered) g-differential
spaces (E,d) having the structure of a module over Wg.*

DEFINITION 12.5. A module over a (graded, filtered) g-differential alge-
bra A is a (graded, filtered) g-differential space E, which is also a module
over A, in such a way that the module action ¢: A® F — F is a morphism
of (graded, filtered) g-differential spaces.

Note that if A is a g-differential algebra with connection 6, then the
characteristic homomorphism c: Wg — A makes A into a module over Wg,
via ¢(w ® ) = c(w)x. If the super algebra A is commutative, then A4
becomes a module over Wy.

Let us make the convention that in the category of super spaces, End(E)
denotes the super algebra of all linear maps £ — FE, but in the cateory of
graded (resp. filtered) super spaces, we take End(E) to be with the algebra
of linear maps E — E of finite degree (resp. finite filtration degree). With
this convention, if E is a (graded, filtered) g-differential space, the space
End(F) becomes a (graded, filtered) g-differential algebra. The condition
for a module E over a (graded, filtered) g-differential algebra A is equivalent
to the condition that the map A — End(E) given by the module action is
a morphism of (graded, filtered) g-differential algebras.

PROPOSITION 12.6. Any two (graded, filtered) module structures
¢0a¢1: Wg@E_)E
over the g-differential algebra Wg are g-homotopic.

PROOF. The corresponding morphisms of g-differential algebras Wg —
End(E) are g-homotopic, by §6.11 (3). O

PROPOSITION 12.7. Let E be a (graded, filtered) module over the (graded,
filtered) g-differential algebra Wg. Then the module map is a g-homotopy
equivalence, with homotopy inverse the inclusion E — WgQ E, vi— 1Q v.

4The following results will not be needed elsewhere in this book.
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PROOF. The tensor product B/ = Wg® E is a Wg-module in two ways,
with w € Wg acting on wy ® v by ww; @ v or by (=¥l @ wv. By the
previous Proposition, these two module structures are g-homotopic. Now
argue as in the proof of Proposition 10.6. O

As a consequence, the map on basic subcomplexes (Wg ® E)pas — Ebpas
induces an isomorphism in cohomology,

Hy(E) = Hpos(E).

The book of Guillemin-Sternberg [33] gives a detailed discussion of modules
over the commutative Weil algebra Wg (under the name ‘W*-modules’).

13. Transgression in the Weil algebra

We will briefly discuss transgression in the Weil algebra Wg. Recall that
W g, and also its invariant part (W g)?, are acyclic differential algebras. That
is, the augmentation map e: (Wg)? — K and the unit map i: K — (Wg)?9
are homotopy inverses. Since the Weil differential d vanishes on (Wg)pas =
(Sg*)?, any invariant polynomial p € (Sg*)? of positive degree is a cocycle,
and hence is the coboundary of an element in (Wg)8.

DEFINITION 13.1. A cochain of transgression for p € (Sg*)? is an odd
element C € (Wg)? with d(C) = p.

The connection on Ag* gives a morphism of graded g-differential algebras
m: Wg — Ag*. It restricts to a morphism of differential algebras

m: (We)? — (Ag")",
where (Ag*)9 carries the zero differential. Note that the space
(Wtg)? Nker(d) = (Wg)? Nran(d)
of cocycles of positive degree is mapped to da(Ag*)? = 0 under .

PROPOSITION 13.2. There is a well-defined linear map
(77) (STg")" = (Ag")®, pe

such that nP = w(C) for any cochain of transgression C with p = d(C). If p
has degree v > 0, then P has degree 2r — 1. The map (77) vanishes on the
subspace ((S*Tg*)®)? spanned by products of invariant polynomials.

PROOF. Since (Wg)? is acyclic, and since the Weil differential vanishes
on (Sg*)¥ any invariant polynomial p € (S"g*)? of degree r > 0 is a
coboundary. Hence we may write p = d(C) for some cochain of trans-
gression C € (W?'~1g)8. If C’ is another cochain of transgression for p,
then ¢’ — C' is closed, hence 7(C’ — C) = 0 as remarked above. Suppose
p,q € (Sg*)? have positive degree, and let C' € T be a cochain of trans-
gression for p. Then ¢qC? is a cochain of transgression for ¢p. Since 7 is an
algebra morphism, 7(¢C) = 7(¢)m(C) = 0. O
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Quantum Weil algebras

We had seen that the Clifford algebra C1(V') of a Euclidean vector space
can be regarded as a quantization of the exterior algebra A(V'), and simi-
larly the enveloping algebra U(g) of a Lie algebra as a quantization of the
symmetric algebra S(g). In this section, we will study a similar quantiza-
tion of the Weil algebra W, for any Lie algebra g with a non-degenerate
invariant inner product B. Identifying Wg = S(g) ® A(g), where S(g) is
the symmetric algebra generated by the ‘curvature variables’, this quantum
Weil algebra is a g-differential algebra Wg = U(g) ® Cl(g). The main re-
sult of this section (due to [4, 5]) is the existence of an isomorphism of
g-differential spaces Wg — Wg. On basic subcomplexes, this quantization
map restricts to Duflo’s isomorphism between the center of the enveloping
algebra and invariants in Sg. We further obtain a proof of Duflo’s theorem
for the case of quadratic Lie algebras, stating that this isomorphism respects
product structures.

1. The g-differential algebra Cl(g)

Suppose the Lie algebra g carries an invariant quadratic form B, used
to identify g* = g. The Lie bracket on g will be denoted [, ], to avoid
confusion with commutators in the Clifford algebra Cl(g). Recall that B
defines a Poisson bracket on A(g), given on generators by {£,(} = 2B(&, (),
and that +(§) = %{f, -}. Define A\(¢) € A%g and ¢ € A3g by

{& MO =16¢lg, {€ 0} = 2A(8).

Thus A(§) = A(ad¢) in the notation of (24), while ¢ is the structure constants
tensor.

Recall from Section §6.7 that A(g) = A(g*) carries the structure of a
g-differential algebra. Observe that d§ = 2A(§), since

U(€)d€ = L(C)§ = [(, €l = {¢ AE)} = 2e(O)A(8)-

ProposITION 1.1. The differential, Lie derivatives and contractions on
Ag are Poisson brackets:

d= {¢7 '}’ L(f) = %{fa ‘}v L(é) = {A(E)v }
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The elements £, \(§), ¢ satisfy the following Poisson bracket relations:

{¢,0} =0,
{¢,€} = 2X(9),
{¢,A(&)} =0,

{AE), MO} = A€, Clo),
{A6), ¢} = [€, ¢l
{6, ¢} =2B(&, Q).

PRrROOF. For the first part it suffices to check on generators ¢ € g = Alg,
using that both sides are derivations of Ag. But L(£)¢ = {\(§),(}, «(&)¢ =
${&,¢} and d¢ = 2A(¢) = {4, ¢} all follow from the definition.

We have {&,(} = 2B(&,() by definition of the Poisson bracket. The
identity L(§) = {A(§), -} determines all Poisson brackets with elements A(),
while {¢, £} = A(€) is the definition of ¢. The remaining bracket {¢, ¢} =
vanishes since ¢ € (A%g)? is invariant, and hence is a cocycle for the Lie
algebra differential. O

Let us spell out the formulas in a basis e, of g, with B-dual basis e®.
We have (cf. (26))

1
(78) A(§) = 4 Z[gaea]g =— ZB [€q, €plg) €7 A eb,
a
Likewise,
1
(79) ¢:§Z)\(6a)/\€a——fZB [€as €b]gs €c) € A el A €.
a abc
The Poisson brackets from Proposition 1.1 quantize to commutators [-, -|cy

in the Clifford algebra Cl(g). Let v(§) = q(A(§)). In the basis,

**ZB 6cueb e’

where the product on the right hand side is taken in the Clifford algebra.

PROPOSITION 1.2. The elements q(¢),v(§),& in Cl(g) satisfy the follow-
ing commutation relations:

(6),4(é)]cr = 7o tr(ad(Casy))
[a(#), €lcr = 27(),
[a(#), v(§)]c1 =0,
[v(€), Clar = [€,¢lg
]
]
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Here

Casg = Zeae“ € Ul(g)

is the quadratic Casimir element, and tr(ad(Casy)) is its trace in the adjoint
representation on g.

PROOF. The commutators with v(§) all follow from L(&) = [v(£), |1,
while the commutators with ¢ are obtained from ¢(£) = 1[¢, 1. It remains
to compute [q(¢), q(¢)]c1 = 2q(#)?. Observe that it is a scalar, since

€, [9(9), q(P)]alar = 2[[¢; a(P)]ars a(P)]ar = 4[v(€), ¢(@)]c1 = 0.

To find this scalar, recall that by Proposition 2.21 in §2, the square of ¢(¢)
may be computed by applying the operator exp(—1/2)"_ t(e®) ® t(eq)) to
o R € NgR Ag, followed by the wedge product Ag® Ag — Ag, followed by
q. Since we already know that only the scalar term survives, we obtain

1

0(9)06) = (- e @1fea)) (92 0)

= —é > (lea)ilen)ilec)d) (s(e)e(e)e(e) )

abc

1

= =51 O Blea len,elg) B, [¢,€ly)

abc

1

=5 Z B([ep, eclgs [€°, €y)
be

= 2—14 Z B(@c, [ebv [6b7 eC]g]g)
be
— 2714 Z B(ec, ad(Casg)e®)

1
=5 tr(ad(Casy))

(See also the computation in §2, Example 3.5.) O

REMARK 1.3. The observation that ¢(¢) squares to the scalar appears
to be due to Kostant and Sternberg [48].

As a consequence, we have

COROLLARY 1.4. The Clifford algebra Cl(g) is a filtered g-differential
algebra with differential, Lie derivatives and contractions given as
dor = [q(¢), o, Lai(€) = [v(€), a1, war(é) = 3[& Jar
REMARK 1.5. Suppose tr(Casy) # 0 (e.g. gissimple). Then H(Cl(g),d) =
0. This follows since g(¢) is invertible in this case. See [4] for details.

The quantization map ¢: A g — Cl(g) intertwines the Lie derivatives
and contractions, but does not intertwine the differentials:
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ProproSITION 1.6. The Lie algebra differential dn on Ag = Ag" and
the Clifford differential differ by contraction with twice the cubic element

¢ € (N3g)9:
gt odcog=dy+2ue).

ProOF. For z € Cl(g), let " be the operator of left multiplication by
z, and 2 the operator of (Zs-graded) right multiplication. Thus

Ly) ==y, 2f(y) = (-1)MFlyz
R

T

for homogeneous elements x,y € Cl(g), and z* — 2f = [z,-]c1. If € € g we

have
g lottog=e&)+u(&), ¢ otfog=¢&) — ().

(The first formula follows since both sides define representations of Cl(g) on
Ag, and these two representations agree on 1 € Ag. The second formula is
obtained similarly, or using that ¢=! o (¢& — ¢g) o q = [£,-]a = 2(€).) Let
eq be a basis of g with B-dual basis e%, and write ¢ = % Y abe e Nep A e
where ¢%¢ = —1B([e?, €y, €°). Then

dp = Zébabce(@a)f(ebﬂ(%)a

abc

Since ¢(§), €(§) are dual relative to the metric, the dual of d, is
op = — Z d™e(eq)uley)(es).
abc
We compute,

¢ ' og(d)og= é > ¢ (elea) + tlea))(€len) + elen))(elec) + lec))

abc

=e(¢) + %Z ¢ (e(eq)ulep)i(ec) + €(eq)e(en)i(ec)) + u(o)

abc

= €(¢) + 1(9) + 3(dn = 04),
0 oq(®) 0 g = e(d) + 5 37 6 (clea)len)iler) — elea)eler)u(er)

abc
=¢(¢) —u(¢) — %(d/\ +0a)-
Subtracting the two results, we obtain
¢~ odcrog=da+2(9).
O

PropoOSITION 1.7. If tr(ad(Casy)) # 0, the cohomology of Cl(g) is equal
to zero.
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PROOF. Let ¢(¢) act on Cl(g) by multiplication from the left. If x €
Cl(g), then

1
d(q(9)z) + a(¢)dz = (da(¢))z = [4(¢), q(d)]z = 1 tr(ad(Casg))z.
Hence h := mq(qﬂ is a homotopy operator between the identity map
and the zero map. O

2. The quantum Weil algebra

2.1. Poisson structure on the Weil algebra. Suppose g carries an
invariant non-degenerate symmetric bilinear form B, used to identify g*
with g, and hence Wg = S(g) ® A(g). In §6, Remark 9.7, we introduced
a family of g-differential algebras (Wg)(") with contractions, Lie derivatives
and differential

WE)¢ = B(£(). (=0,

L) = 6.y LEC = 6. g

d7¢ = r+20(Q), dE =" L(e)ee’
(2
(recall dp& = 2A(§)). We observed that for r # 0, these are all isomorphic
by a simple rescaling of the é—variable. Both Sg, Ag are graded Poisson
algebras, where the bracket on Sg is defined by the Lie bracket and that on
Ag is determined by B. Hence Wg becomes a Poisson algebra. Explicitly,
the Poisson brackets of the generators are

{6,¢} =2B(,0), {£80 =16, {&¢H=0.

For the rest of this Section we will make the choice r = 2, since this is the
unique choice for which the differential becomes a Poisson bracket:

LEMMA 2.1. The derivation d™) can be written as a Poisson bracket
{D,-} if and only if r = 2. In fact, d? = {D,-} where D € (Wg)? is the
cubic element

i
PROOF. Suppose d") = {D,} for some element D € Wg. Since d raises
degree by 1, while {-,-} has degree —2, we can take D of degree 2. Since
dMe; = rée; + 2X(e;),
and recalling {¢, £} = 2X(§), we see that we must have
D= g S el + 6.
i

But then {D,¢;} equals d™é; = [e;, e;]g¢’ if and only if r = 2. 0
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For r = 2, the variables

£, E=dPe=2(E+ \9)).

satisfy the bracket relations

{57 C} = 2B(£7C)7 {E,E} = 2[§7C]9> {57C} = 2[&7(]9

In particular

REMARK 2.2. (1) For general r # 0, the bracket relation among
the variables € = d("¢ = r& + 2X(€) takes on the more complicated
form

{€,¢} = rl&, cJg +2(2 = )A€, Cl)-
(2) Rather than working with the modified differential d®, one can
also work with the Poisson bracket on Ag and Clifford algebra struc-
ture defined by B. This is the approach taken in [4].

For the rest of this chapter, we put r = 2. The element D € (Wg)3 (cf.
(80)) reads, in terms the variables &, ¢&,

D=1 &e —2¢.
i
PRrROPOSITION 2.3. We have the following Poisson bracket relations in
Wg:
{D,D} =25 &,

{D.&}=¢
{D,&} =0
{&¢) =206,
{&¢ =26, s

{&, ¢} =2B(&, Q).
In particular, {D, -} = d?.

PROOF. The bracket relations involving &, £ are all simple consequences
of {&,-} = 2u(§) and {¢,-} = 2L(§). It remains to check the formula for
{D,D}. We have

{D,D} =2 ¢eiB(ee)) +...=2) & +...

ij i
where the dots indicate terms in Sg@A*g. But {D, D} lies in the symmetric
algebra generated by the &, since

L(&){D,D} = %{f,{D,D}} = {{f,D},D} = {EaD} =0.
Hence the ... terms all cancel. O
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REMARK 2.4. Note that the quadratic Casimir element Ziaé\i lies in
the Poisson center of Wg. Hence, the formula for {D, D} is consistent with
[d® d®] =o.

2.2. Definition of the quantum Weil algebra. Quantizing the Pois-
son bracket relations of Wg, we arrive at the following definition.

DEFINITION 2.5. The quantum Weil algebra Wg is the filtered super
algebra, generated by odd elements ¢ of filtration degree 1 and even elements
& of filtration degree 2, with commutator relations

€, CIw =2B(¢,0), [6,¢w = 2[¢,¢lg, [ Cw = 2[€, ¢l
That is, Wy is the semi-direct product

Wg = Ug @, Cl(g),

where Ug is the enveloping algebra generated by the elements %E, acting on
Cl(g) by the extension of the adjoint representation.

Put differently, Wy is the quotient of Wg = T(Eg4[1]) by the two-sided
ideal generated by elements of the form,

E®C+C®E—2B(£,()

E®CHC®E—2[¢

£@C—C®E—[£, (g
It is straightforward to see that this ideal is invariant under the differen-
tial, contractions and Lie derivatives on Wg. Hence, Wg carries a unique
structure of a filtered g-differential algebra, such that the quotient map
Wg — Wg is a morphism of g-differential algebras. The formulas for differ-

ential, contractions and Lie derivatives are induced from those on Wg, and
are given on generators by

d§:E7 dE:O7

L(&)C = B(gv C)v [’(é)g = [57 C]Q?

As for the commutative Weil algebra W, it is often convenient to change
the variables to &, £ = %E — (&) (where v(§) = ¢(A\(€))). In terms of the
new generators the commutator relations read,

~ —

€, Chw = 2B(£,¢), [&.¢w =0 [&w = [, ;.

Hence
Wg = Ug ® Clg,

where Ug denotes the enveloping algebra generated by the elements § As
for the usual Weil algebra Wy, we see that the basic subcomplex is

(Wg)bas = (Ug)gv
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using the enveloping algebra generated by the g’s. Since it has no odd
component, the differential on the basic subcomplex is zero. Thus

Hbas(Wg) = (Ug)g

In terms of the new variables, it is also clear that the associated graded
algebra to the filtered algebra Wg is

gr(Wg) = Wy,

because gr(Ug) = Sg and gr(Clg) = Ag. From the formulas on generators,
we see that the Poisson bracket on Wg is induced from the commutator on
Wg. In this sense, Wg is a quantization of Wg.

2.3. The cubic Dirac operator. Let D € W(S)g be the ‘quantized
version’ of the element D € W3g,

D=1 eie; —2(¢).
i
In terms of the variables &, §A, the cubic Dirac operator takes on the form,
D= Z?ei + q(9).
i

Similar to Proposition 2.3, we have:

THEOREM 2.6. We have the following commutator relations in Wg:

1
[D, D]y = 2Casqy + T tr(Casy),

]
€, Dlw =0,
€&, Dlw =¢
£, Clw = 2[€, ¢y
€, Clw = 2[¢, g
€, ¢{Iw = 2B(£, Q)

Here Casg = ), Giet € Ug is the Casimir element, and tr(Casy) its trace in
the adjoint representation. The contractions, Lie derivatives and differential
on Wg are all inner derivations:

PROOF. The identities ¢(¢) = [, Jw, L(&) = 3[¢, ]w are clear from
the definition of Wg. They imply all the commutator relations involving
¢, & From [¢,[D, D]] = 2[¢, D] = 0, we see that [D, D] € Ug (the enveloping
algebra generated by the variables E) Denoting terms in Ug ® q(ATg) by
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..., and using our earlier computation of [¢(¢), ¢(¢)], we find:

(D.2) = Y fee' +a(0). el + 4(0)
=D_agle, o+ la6), (@) + ..

1
= 2Casy +E tr(Casy),

since the terms in Ug®q(A™"g) must cancel. The identity d = [D, -]y follows
since both sides are derivations that agree on generators. O

The element D is called the cubic Dirac operator, after Kostant [45]. It
is an algebraic Dirac operator in the sense that its square

1
D? = Casy + 21 tr(Casyg)

is the quadratic Casimir (viewed as the algebraic counterpart to a Lapla-
cian), up to lower order terms. In §9 below, we will discuss interpretations
of D as geometric Dirac operators over Lie groups.

2.4. Wy as a level 1 enveloping algebra. We had remarked that the
Clifford algebra can be viewed as a ‘level 1 enveloping algebra’ of a super Lie
algebra, see §5.1.9. The quantum Weil algebra Wg can be viewed similarly,
using the graded differential Lie algebra Fg[1] = g[1] x g. For £ € g let I¢, L¢
denote the corresponding generators of degree —1,0. The bilinear form B
defines a central extension

(82) K[2] @ g1] x g,

where K[2] is spanned by a central generator ¢ of degree —2, and with the
new bracket relations

L, Ic] = 2B(E, Q)e, [Le; Ie] = Tie.¢ly [Les Ll = Lig -
It is a graded g-differential Lie algebra, where the action of contractions
and Lie derivatives is just the adjoint action of g[1] x g, and where dfz =
L¢, dLe =0, dc = 0. After degree shift by 2, (82) is a filtered differential
Lie algebra,
K& g[-1] » g[-2],

where ¢ now has filtration degree 0. We may regard Wg as the level 1
enveloping algebra,

Wg=UK®®g[-1] xg[-2])/ <c—1>,
(with the internal filtration). The generators &, € correspond to I¢, 2L¢ with
the shifted filtration degrees.

One can also go one step further and consider the graded differential Lie
algebra

(83) K[2] @ g[1] x g ® K[-1],
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containing (82) as a subalgebra, and with the generator D € K[—1] acting
as the differential:

[D,D] =0, [D,c]=0, [D,Ie] = Le, [D,L¢]=0.

It is a graded super Lie algebra, with an odd invariant bilinear form given by
(I¢, Le) = B(&,(), (c, D) =1 (all other inner products among generators
are 0).

REMARK 2.7. The double extension (83) is similar to the standard dou-
ble extension of the loop algebra of a quadratic Lie algebra. Indeed, both are
obtained as double extensions for an orthogonal derivation [5]. See Severa
[57] for a more conceptual explanation of this relationship.

The Lie algebra (83) and the corresponding super Lie group appear in
the recent work of Li-Bland and Severa [23].

3. Application: Duflo’s theorem

Using the quantum Weil algebra, we will now prove Duflo’s theorem
(cf. §5, Theorem 6.4) for the case of quadratic Lie algebras g, following
[4, 5]. Use the bilinear form on g to identify g* = g. Think of Wg (with
differential d®)) as S(E,[1]), and let

(84) q: Wg — Wy

be the map, extending & — &, € — & on generators by super symmetrization.
It is a vector space isomorphism, since its associated graded map is the
identity map.

REMARK 3.1. The quantization map ¢ can also be viewed as the map
defined by super symmetrization

S(K @ g[-1] x g[-2]) = U(K & g[-1] > g[-2])
after taking a quotient of both sides by the respective ideals < c—1 >.

By Proposition 5.2, ¢: Wg — Wpg is an isomorphism of g-differential
spaces, and hence it restricts to vector space isomorphisms

(85) (Wg)hor = Sg — (Wg)hor = Ug
and hence
(86) (S9)* = (Ug)®.

We may also think of (86) as the map in basic cohomology Hypas(Wg) =
(Sg)® — Hpas(Wg) = (Ug)¥, since the differential on the basic subcomplexes
is zero.

THEOREM 3.2. The map (86) is an isomorphism of algebras.
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PROOF. The symmetrization map factors through the non-commutative

Weil algebra Wg: B
Wg— Wg— Wg,
hence (86) factors as
(59)% = Hp.s(Wg) — (Ug)?.

The second map is an algebra homomorphism since it is the map in basic
cohomology induced by the homomorphism of g-differential algebras Wg —
Wg. The first map is an algebra homomorphism, since it is inverse to the

map in basic cohomology induced by the homomorphism of g-differential
algebras Wg — Wag. O

We stress that the isomorphism Sg — Ug in (85) is not the symmetriza-
tion map for the enveloping algebra, even though it comes from the (super-
)symmetrization map ¢ of the Weil algebras Wg. Indeed, ¢ is defined using
symmetrization with respect to £ ,&, but Ug is the enveloping algebra gen-
erated by the variables £. To get an explicit formula for (85), we want to
express ¢ in terms of the symmetrization map

sym = symy; ®qc1: Sg @ Ag — Ug ® Cl(g)

relative to &, 5
Recall that the formula relating exponentials in the exterior and in the
Clifford algebra (cf. §4, Theorem 3.8) involved a smooth function
S:g— Ag
of the form S(&) = JY2(€) exp(r(£)) where JV/? is the ‘Duflo factor’ and v

is a certain meromorphic function with values in A%2g. This function gives
rise to an element _

S € Sg* ® Ag,
where the first factor can be thought of as constant coefficient (infinite order)
differential operators. This element acts on Wg = Sg® Ag in a natural way:
The Sg* factor acts as an infinite order differential operator, while the second
factor acts by contraction.

THEOREM 3.3. The isomorphism of g-differential spaces q: Wg — Wy
is given in terms of the generators £,& by

g =symoS: Sg® Ag — Ug ® Cl(g).
In particular, its restriction to Sg C W is the Duflo map,
Duf = symom: Sg — Ug.

PROOF. By definition, ¢ is the symmetrization map relative to the vari-
ables £, &. It may be characterized as follows: For all odd variables v* € g*
and all even variables p/ € g*, and all N =0,1,2.. .,

q((z vie + %Zujéj)N) = _viei+ 3y we)™.
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These conditions may be summarized in a single condition,
q(expw(z vie; + % Z ,ujéj)) = expw(z vie; + % Zujéj),
i j i j

to be interpreted as an equality of formal power series in the variables v, u.

We want to express ¢ in terms of the generators e;, e; = %éi — A(e;) of
W g respectively e;, e; = %Ei — v(e;) of Wg. Using that e; and e; commute
in W,

eXpW(Z Ve + % Z Mjéj) = eXPU(Z Mjgj) eXPm(Z v'e; + Z Mj’Y(ej))-
i J J i J

The first factor is sym (expg (> y 11'€;)) by definition of the symmetrization
map sym: Sg — Ug. The second factor is the Clifford exponential of a
quadratic element, and is related to the corresponding exponential in the
exterior algebra,

exm(z Ve, + Z 1(e) = gar <L(5(u)) eXpA(Z Ve, + Z ujk(ej))> :
Hence l ] z j
expw<zizuiei +1 zj: 1)
= symy ((S(n) exps(3_ wE5) expr(3v'e + 3 1 (ey)))
— symyy o§(expw (zi: vie, + ZJ: N (ej) + zj: ,ﬂ‘aj))
= symyy o5 expyy (zi: vie + L ;mej)).

O

This completes our proof of Duflo’s theorem in the case of quadratic
Lie algebras. Note that in this proof, the ‘Duflo factor’ J/2 is naturally
interpreted in terms of Clifford algebra computations. On the other hand,
Duflo’s theorem is valid for arbitrary Lie algebras (not only quadratic ones).
In recent years, new proofs for the general case have been found using
Kontsevich’s theory of deformation quantization [42], and more recently
by Alekseev-Torossian [6] in their approach to the Kashiwara-Vergne con-
jecture [40]. However, all of these proofs are a great deal more involved
than the argument for the quadratic case.

4. Relative Dirac operators

We will now generalize to Kostant’s [45] relative version of the cubic
Dirac operator, associated to a pair of quadratic Lie algebras. Some of
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the ideas are also present in lecture notes by A. Wassermann [61]. The
discussion uses simplifications from [5].

Suppose ¢ C g is a quadratic subalgebra, that is, the restriction of B to
t is non-degenerate. Let p = £ be the orthogonal complement of ¢ in g.
Then

g=tdp

is a -invariant orthogonal decomposition.

DEFINITION 4.1. The relative Weil algebra for the pair g, £ is the subal-
gebra

W(g, E) = (U(g) ® C](p))f—inv
of Wg.

Equivalently, viewing Wg as a t-differential subalgebra by restriction,
W(g, £) is the -basic subalgebra. Define an injective algebra homomorphism

(87) j: WE— Wg,

by sending the generators &, € € WE for & € £ to the corresponding genera-
tors in Wa:

i€) =¢, i) =¢
Checking on generators, it is immediate that j is a morphism of ¢-differential
algebras.

PROPOSITION 4.2. The subalgebra W(g, €) is the commutant of j(WWE) C
Wg.

PROOF. Since j(WE) has generators j(¢) = € and j(€) = &, for £ € ¢, its
commutant consists of elements annhilated by all «(§) = 3[¢,-] and L(¢) =

%E, || for £ € €. In other words, the commutant is the ¢-basic subalgebra

(Wg)kfbas = W(g, ?) O

REMARK 4.3. The morphism j can also be viewed as follows: The in-
clusion £ — g gives a morphism of graded ¢-differential Lie algebras,

K[2] @ (¢[1] x ) — K[2] ® (g[1] x g).

Degree shift by 2 turns it into a morphism of filtered ¢-differential Lie alge-
bras, and the enveloping functor gives a morphism of filtered ¢-differential
algebras,

UK @ (e[-1] x ¢[-2])) = UK & (g[-1] > g[-2]))-

The map of quantum Weil algebras is obtained by taking the quotient by
the ideal < ¢ — 1 > on both sides.

DEFINITION 4.4. The difference
is called the relative Dirac operator for the pair g, €.

163



4. RELATIVE DIRAC OPERATORS

THEOREM 4.5. The relative Dirac operator D(g, €) lies in the differential
subalgebra W(g,t), and the restriction of [D(g,%),:] to W(g,¥t) is the dif-
ferential of W(g,¢). The commutator of D(g,€) with itself is given by the
formula,

1 1
(88) [D(g,t),D(g,t)] = 2Casy —2;5(Casg) + T trg Casg I tre Cas,

where Casg € U(g) and Casg € U(8) are the quadratic Casimir elements, for
the enveloping algebra generated by the ‘curvature variables’.

PROOF. The element D(g, ¢) is ¢-horizontal since

for all £ € ¢. Similarly, it is ¢-invariant. This shows D(g, ) € W(g, £). Next,
for x € W(g, £) we have [D(g, £),z| = [Dy, 2] = dz, since elements of W(g, £)
commute with elements of WE.

Write Dy = j(Dg) + D(g,t). Since j(Dy) € j(WE) and D(g,t) € W(g, )

commute, we obtain
[DE’ DE] = ]([Déa DE]) + [D(gv E)’ D(g’ E)]

The formula for [D(g, ), D(g, )] now follows from the known formulas for
[Dy, Dy] and [Dg, D¢, see Theorem §5.2.6. O

~

Let us now given a formula for D(g,£) in terms of the variables £, &.
Invariance of the bilinear form implies that [¢,p] C p. Hence ade, £ € ¢
decomposes as a direct sum of its £ and p components. Accordingly the
element A\y(€) € A%g decomposes as

Ag(€) = Ae(§) + Ap(§),
for some Ay (&) = A(ad(€)]p) € A%p, and hence by quantization

Ya(§) = 7e(§) + 7 (§)-

Commutator with v,(£) = ¢(A\p(€)), & € € generates the adjoint action of £
on Cl(p).

LEMMA 4.6. The homomorphism j: Wt — Wg is given in terms of
generators £,& by

i) =¢ =+
for & € t. In particular, the inclusion U () —
generators for the £-action.

’YP(€>7
U(g) ® Cl(p) is defined by the

Proor. We have
J(©) = 5(3€ — () = 3€ — (&) = &+ (). m

Let ¢, € A3p denote the cubic element, given as the projection of ¢, €
A3g relative to the splitting g = €@ p. Fix a basis {e,} of g, given by a basis
of ¢ followed by a basis of p.
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LEMMA 4.7. The decomposition g = € & p induces the following decom-
position of the cubic element ¢g,

(®) a
g =¢e+¢p+za Ap(€a) A €.
Here ZS) indicates summation over the basis of €.

PRroor. The difference ¢g — ¢¢ — ¢ are the ‘mixed’ components of ¢g,
i.e. those in (A%€) Ap @ €A (A%p). Since [E €] C & the element ¢y has no
component in (A2€) Ap. The sum Z((lk))\p(ea) Ae® is the €A (A%p)-component,
as one verifies by taking contractions with £ € ¢. O

From the formula for ¢4 (see (79)) we read off that

1 (p)

b
_E ach([ea’eb}gvec) e* Ne’ N e

¢p:

where ZS;}C indicates a triple summation over the basis of p.

PROPOSITION 4.8. The element D(g,t) € W(g, ) = (Ug® Cl(p))*™" is
given by the formula

(89) Do) = 3" euc” +a(d).

where Z((lp) indicates summation over the basis of p.

ProoF. Using the formulas for Dy, Dy, and the property ](E) = ngvp &)
we have

D(g.t) = > e+ <¢g — o=l A > |

By the Lemma, the expression in parentheses is ¢y. O

REMARK 4.9. The pair g, £ of quadratic Lie algebras is called a symmetric
pair if [p, ply C €. Equivalently, ¢, = 0. For this case, the element D(g, t) =

ng )e,e® was studied by Parthasarathy [55] in his 1972 paper Dirac operator
and the discrete series. (Specifically, the context was that of a real semi-
simple Lie group G with maximal compact subgroup K, with g =€ @ p the
Cartan decomposition.) Kostant [45] discovered that for arbitrary pairs of
quadratic Lie algebras, one obtains a Dirac operator with good properties if
one adds the cubic term ¢(¢;). This motivated the terminology ‘cubic Dirac
operator’.

One can also define a morphism of the commutative Weil algebras j: Wt —
Wy, by the map j(¢) = &, j(€) = €. The Poisson commutant of its image
j(W¥) is the £-basic subalgebra W (g, €) = (Wg)¢_pas. Clearly, W (g, £) is the
associated graded algebra to W(g, £).
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LEMMA 4.10. We have commutative diagram of €-differential spaces,
we — 5 Wy

(90) K K

J

where the vertical maps are quantization maps for quantum Weil algebras,
as defined in Section §7.5.

PROOF. Recall that the quantization maps are given by symmetrization
in these variables &,¢. Since j: Wt — Wg and j: W — Wy are algebra
homomorphisms, the symmetrization map commutes with j. ([l

The morphism of ¢-differential algebras j: W& — Wg restricts to a mor-
phism of £-basic subcomplexes. Since WE)_pas = (U£)E, while Vg)e_pas =
W(g, ), this gives a cochain map

(91) g (U8 — W(g,¥),

where (U%)! carries the zero differential. Similarly, we obtain a cochain map
g (SB) — W(g,¥8).

PROPOSITION 4.11. The maps in the commutative diagram

(S6)F —— H(W(g,b))

g ! |

(U8)" —— H(W(g,¥))

obtained by taking the €-basic cohomology in (90), are all isomorphisms of
algebras. In particular,

H(W(g,?)) = (U®)".

ProOOF. We first show that the inclusion j: W — Wy is a £-homotopy
equivalence, with homotopy inverse the projection Wg — We. Let Wp =
S(Ey[—1]) € Wg be the subalgebra generated by ¢ € p[—1], £ € p[—2]
for £ € p. Note that E,[—1] = Ep[—1] @ 0 is a ¢-differential subspace of
Ey[-1] ® Kc. Thus Wg = We ® Wp is an isomorphism of ¢-differential
spaces. The homotopy equivalence between S(E,[—1]) and K is compatible
with the t-differential structure, i.e. it is a -homotopy equivalence.

This gives the desired £-homotopy equivalence between Wg and WE.
In particular, j: Wt — Wg induces an isomorphism in basic cohomology,
proving that the upper horizontal map in (90) is an algebra isomorphism.
Consequently the lower horizontal map is an algebra isomorphism as well.
The left vertical map is an algebra isomorphism by Duflo’s theorem. We
conclude that the right vertical map is an algebra isomorphism. O
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The inclusion
(Ug)g - (Wg)gfbas — (Wg)ffbas = W(ga E)

of the g-basic subalgebra into ¢-basic subalgebra is a cochain map, defining
an algebra homomorphism

(Ug)® — HW(g,¥)) = (UE)".

THEOREM 4.12. The algebra homomorphism (Ug)® — (U€)® fits into a
commutative diagram,

(Sg)? —— (SB)°

! |

Ug)r —— (U
where the vertical maps are Duflo isomorphisms, and the upper horizontal
map 1is induced by the orthogonal projection pry: g — €.

PROOF. The result follows from the commutative diagram

(Wg)g—bas . W(9>E)

| |

(Wg)g—bas — Wl(g,t)
by passing to cohomology, using our results
H(W(g,®) = (SO, H(W(g,¥) = (UY)".
The upper horizontal map (Sg)? — (S€)¥ can be viewed as a composition
Hy 1as(Wg) = He_bas(Wg) — He_pas(WE).

where the second map is induced by the morphism Wg — W¢E given by
projection of &, ¢ to their £-components. This map takes \g(&) for £ € g

to Ae(pre(§)). Hence, in terms of the variables £, & it is still induced by the

projection & — prg(§), £ s p/rE@ As a consequence, the map (Sg)? —
(S€)t is simply the map induced by the orthogonal projection. ([

REMARK 4.13. Theorem 4.12 is a version of Vogan’s conjecture (as for-
mulated by Huang-Pandzic [35]) for quadratic Lie algebras. It was proved
by Huang-Pandzic for symmetric pairs, and by Kostant [47] for reductive
pairs. Kumar [49] interpreted Vogan’s conjecture in terms of an induction
map in the non-commutative equivariant cohomology from [4]. The simple
proof given here, based on the quantization map for Weil algebras, is taken
from [5].
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5. Harish-Chandra projections

5.1. Harish-Chandra projections for enveloping algebras. A tri-
angular decomposition of a Lie algebra g is a decomposition

g=n_otdny

as vector spaces, where n_, ¢, n, are Lie subalgebras of g and [¢,ny] C ny.
The triangular decomposition determines characters

ke €, ke(§) = %trni(adg).
By the Poincaré-Birkhoff-Witt theorem, the multiplication map
Un_)@U{E)@UMmy) — Ulg)

is an isomorphism of filtered vector spaces. By composing the inverse map
with the projection to U(£) (using the augmentation maps U(ny) — K), one
obtains a map of filtered vector spaces

(93) pu:Ulg) = U(Y),

left inverse to the inclusion U(¢) < U(g). We will refer to pyy as the Harish-
Chandra projection for the given triangular decomposition of g. Equiva-
lently, it is the projection to U(€) relative to the decomposition

Ug) = (n_U(g) + Ulg)ns) © U (2).

ExAMPLE 5.1. Let g be a complex reductive Lie algebra, and & € g a
semi-simple element, contained in some compact real form of g. Then the
eigenvalues of ad(§p) on g are all purely imaginary. Let n_, £, n; be the sum
of eigenspaces of ad(§y) of eigenvalues 27\/—1s with s < 0,5 = 0,5 > 0
respectively. Then g = n_ @ € ® ny is a triangular decomposition. If & is
a regular element so that £ is a Cartan subalgebra, the projection pg is the
classical Harish-Chandra projection. In this case, the character x coincides
with p € t*, the half-sum of positive (complex) roots.

The projection (93) is not an algebra homomorphism, in general.

PROPOSITION 5.2. The Harish-Chandra projection (93) intertwines the
units, counits, comultiplications, and antipodes of the Hopf algebras U(g)
and U(t). Suppose s C ¢ is a Lie subalgebra with the property

U®U* () =0, (U (n_)U(¥))* = 0.
Then py restricts to an algebra morphism
U(g)" = U(t)°

on s-itnvariants. In particular, if such a subalgebra s exists, then py is an
algebra morphism on g-invariants.
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PROOF. It is obvious that py intertwines units and counits. The sub-
space (n_U(g) + U(g)ny) is invariant under the antipode s of Ug, hence py
intertwines antipodes. Finally,

ker(py) = A(n-U(g) + U(g)ny)

C(n-U(g) +U(g)ny) ©U(g) + U(g) @ (n-U(g) + U(g)ny)

= ker(py @ pu)
shows that it intertwines the comultiplications as well. The assumption on
5 implies

(n-U(g) + U(g)ny)* = (n_Ul(g)ny)*,

which is an ideal in U(g)®. Hence the quotient map to U(£)*® is an algebra
homomorphism. O

REMARK 5.3. The assumptions are satisfied in the setting of Example
5.1, by taking s = t a Cartan subalgebra t C €. This follows by studying the
decomposition into t-weight spaces.

Suppose that g is a quadratic Lie algebra, with bilinear form B, and
that the subalgebra £ is quadratic while ny are isotropic. We will assume
furthermore that g* C € which is thus the center of £. Since B defines a
£-equivariant non-degenerate pairing between ny, we have Ky = —k_. Put
R = K4+.

Letting e, be a basis of ny, and e® the B-dual basis of n_ = (ny)*, the
element

Zea@)ea Eny®@n_

«
does not depend on the choice of basis, and is ¢-invariant. (Under the
identification ny ® n_ = ny @ n_ = End(n.), it corresponds to the identity
endomorphism.) Hence, the element

K;ﬁ = % Z[@a, €a]g
«

is t-invariant and therefore lies in the center of &.
Let Casy € U(g) be the quadratic Casimir defined by B, and Casg the
Casimir defined by the restriction of B to &.

PROPOSITION 5.4. The Harish-Chandra projection of the quadratic Casimir
element is given by
pu(Casy) = Case +257.
PROOF. Let ¢; be a basis of €, with B-dual basis e’, and let e, be a basis
of ny, with B-dual basis e* of n_. Then

Casy = Z eie’ + Z(eaeo‘ + %)
(6%

7

= Casg +2 Z “eq + 2k°
«

Harish-Chandra projection removes the second term. O
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REMARK 5.5. Given a central extension 0 — Kc — g — g — 0, the
triangular decomposition of g induces a triangular decomposition of g. For
any r € K one may thus define Harish-Chandra projections

o~

pu: Ur(g) = Un(8)
for the level r enveloping algebras.
REMARK 5.6. The notion of triangular decomposition, with the corre-

sponding Harish-Chandra projection, generalizes with obvious changes to
the case of super Lie algebras.

5.2. Harish-Chandra projections for Clifford algebras. Given a
quadratic vector space (V, B) and a decomposition V = V_® Vi@V, where
Vo is a quadratic subspace and VOL =V, @& V_ a splitting of its orthogonal
by two isotropic subspaces, one has an isomorphism

Cl(V) = A(V2) © Cl(Vo) @ A(Vy),

as algebras, and the augmentation maps for AVy define a Harish-Chandra
projection

par: CI(V) — ClL(Vp).
Equivalently, this is the projection along V_C1(V) + C1(V)V,.

REMARK 5.7. Thinking of C1(V') as the level 1 enveloping algebra of the
filtered super Lie algebra K @& V[—1] (cf. §5.1.9) this is may be viewed as a
Harish-Chandra projection

Ui(Ke V[-1]) = Ui(K & Vp[-1]),
as in Remarks 5.5, 5.6.
We are interested in the setting from Section 5.1, where V = g is a

quadratic Lie algebra, and Vp = £, VL = ny the summands of a triangular
decomposition g=n_H €S n,.

LEMMA 5.8. The Harish-Chandra projection pcy: Cl(g) — CI(€) inter-
twines contractions 1(§) and Lie derivatives L(§) for € € €.

PROOF. The subspace n_Cl(g) + Cl(g)ny is invariant under ¢(&), L(£).
([

The projection ~yc; does not intertwine the Clifford differentials in gen-
eral: See Proposition 5.12 below.

Let k € € as above. Let ¢4 € A3g, ¢¢ € A3t be the structure constants
tensors (cf. §7.1).

PROPOSITION 5.9. The Harish-Chandra projection of the quantized struc-
ture constants tensor is given by

pai(a(eg)) = q(de) + K.
For any & € ¢, the Harish-Chandra projection of ~4(&) is

pa1(7g(€)) = ve(§) + k(&)
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PROOF. We use the basis from the proof of Proposition 5.4. We have
the formula,

(94) ’Yg(f):iZ[é,ez]eJr Z elga + Zé,ea

)

The first term is 7¢(£). The second term vanishes under pc). The last term
has Harish-Chandra projection

5 S0 Bl ealgre®) = w(6)

It follows from parity considerations that pci(g(¢g)) —q(¢e) € €. To compute
this element we apply ¢(£). We have

(&) (par(q(dg))—a(9e)) = par(¢(€)a(dg))—1(€)a(Pe) = pcr(vg(§))—e(§) = K(E).
This shows pai(q(¢g)) — q(¢e) = &*. O

PROPOSITION 5.10. Let I' € Cl(g) be a chirality element for g (i.e. the
quantization of a generator I'n of det(g)). Then pci(I') is a chirality element

of Cl(¥).

PRrROOF. Let e; be a basis of ¢, and e,, e® the B-dual bases of ni.. We
may take I' to be the quantization of the wedge product of all these basis
vectors.

I'=g¢q ((H e* A ea)(H ei)>
= TLate* Aea) a[T )
= H(eaea -1) Q(H €;).

We read off that the Harish-Chandra projection is +¢(] ], e;). If I" is nor-
malized so that I'? = 1, then pcy(I')? = 1 (since pcy is an algebra morphism
on invariants). O

The Lie algebra homomorphism v4: g — Cl(g) extends to an algebra ho-
momorphism vg: U(g) — Cl(g), and similarly for €. These homomorphisms
do not intertwine the Harish-Chandra projections, in general. However, one
has the following slightly weaker statements. Let 7: U(¥) — U(£) be the
automorphism of U (¢) extending the map ¢ — U(¥), £ — &+ k(§).

PROPOSITION 5.11. The following diagram commutes:
Ulg) —— Cllg)
g

[ pa

Ue) —— Cle)
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PROOF. From (94) we deduce that

Ya(§) = (§) + .(§) mod n_Cl(g)ny = n(7(§)) mod n_Cl(g)ny
if £ € €, while v4(§) € n_U(g)ny for £ € ny. Since n_U(g)ny is a 2-sided
ideal in U(g), this implies
Yo(&1 &) = 7(T(&)) -+ ve(7(&)) mod n_Cl(g)ny
for all &1,...,& € g. O

PRrROPOSITION 5.12. The Harish-Chandra projection pcy intertwines the
Clifford differential d on Cl(g) with the differential d+ 2u(k) on CI(¥).

Proor. We denote the two Clifford differentials by dg, d¢ for clarity.
Recall that dgé = 2v(£), & € g. As observed in the proof of Proposition
5.11, we have v4(n_) € n_Cl(g) and v4(ny) € Cl(g)ns. It follows that
n_Cl(g) and Cl(g)n, are differential subspaces of Cl(g). On the other hand,
for £ € ¢ C Cl(g) we have

dg€ = 274()
= 2(7e(§) + £(§)) mod n_Cl(g)ny
= (d¢ +2u(k))€ mod n_Cl(g)ny.

Hence, if € CI(¢) C Cl(g), dgz = (de + 2¢(k))z mod n_Cl(g)n. O
PROPOSITION 5.13. Suppose s C g preserves €, ny,n_ and that
(AT (no)CI(®)* =0, (CLE) AT (n4))* =0.

Then the Harish-Chandra projection yq) restricts to an algebra morphism on
s-invariants. In particular, if such a subalgebra s exists, then ~cy restricts
to an algebra morphism Cl(g)? — Cl(¢). Furthermore, in this case

1 1
(95) 1 trg(ad(Casg)) — 12 tre(ad(Casg)) = 2(k, K).
ProOF. The conditions on s imply
Cl(g)* = (n_Cl(g)n,)* @ CI(¥)°.
Since (n_Cl(g)n,)? is a 2-sided ideal in Cl(g)®, the quotient map Cl(g)* —

Cl(¢)® is an algebra homomorphism. Let us use this together with the for-

mula por(a(d)) = a(de) + t to compute [pei(a(dg)),par(a(@y))]. We have
[q(@e), ffﬁ] = QWE(M) = 0 since x is central in . Hence

[pc1(a(g)), per(a(99))] = la(de), a(de)] + 2B(KF, 7).
On the other hand, we have [q(¢¢), ¢(¢¢)] = %2 tre(ad(Case)) and [g(¢g), ¢(¢q)]
%trg(ad(Casg)), cf. §7.1. -

The assumptions of the Proposition hold for the standard example 5.1,
by taking s = t to be a Cartan subalgebra in £. In this case, the Proposition
above is a version of the Freudenthal-de Vries strange formula. (See [45,
Proposition 1.84].)
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5.3. Harish-Chandra projections for quantum Weil algebras.
Let g = n_@€Pny be as in the last Section. Let W(g) be the corresponding
quantum Weil algebra. Note that the filtered Lie algebra ny = ny[—1] x
ny[—2] (spanned by &,€ for € € ny) is a E-differential subspace of Wg,
and similarly for n= = n_[—1] x n_[—2]. Hence n_W(g) + W(g)n; is a &-
differential subspace. It defines a complement to W(¢), and projection onto
the second summand in

W(g) = (n-W(g) + W(g)ny) @ W()
will be called the Harish-Chandra projection
pw: W(g) = W(E)

for the quantum Weil algebras.
Put differently, pyy is obtained by composing the inverse of the map

UmZ) @ W(E) @ U(ny) — W(g)
with the augmentation maps for U(ny).

PROPOSITION 5.14. The Harish-Chandra projection pyy is a morphism of
t-differential spaces, left inverse to the inclusion j: Wt — Wg. It restricts
to a cochain map W(g,€) — U(&)*.

ProoOF. The first part is evident from the construction. The second
part follows since pyy takes W(@)e_pas = W(g,£) to W(E)e_pas = (UE)E. O

PROPOSITION 5.15. The Harish-Chandra projection of the cubic Dirac
operator for g

pW(DQ) = ,Déa

the cubic Dirac operator for £.

PRrOOF. Recall that Dy = j(D¢) + D(g, £). The Harish-Chandra projec-
tion pyy(D(g, t)) vanishes since j(W(g, t)) consists of even elements. O

For the commutative Weil algebras, one has a much simpler projection
pw: W(g) — W(F)
induced by the projection g — €.

THEOREM 5.16. The following diagram commutes up to t-homotopy:
W(g) —— W)
[T
W (¢) T> W(e)

173



5. HARISH-CHANDRA PROJECTIONS

It gives rise to a commutative diagram,
S(@) —— Ule)*

Jrs [rore
St —— U(e)®
q
where the horizontal maps are Duflo maps.

PROOF. Since ny are E-differential spaces, the augmentation maps
Uny) - K

are -homotopy equivalences.
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CHAPTER 8

Applications to reductive Lie algebras

We will now apply the results above to the case that g is a complex
reductive Lie algebra.

1. Notation

We refer to Appendix B for background information on reductive Lie
algebras. Let us list some of the notation introduced there.

Fix a compact real form gg, and let £ — £* be the corresponding complex
conjugation mapping for g. We assume that B is an invariant non-degenerate
symmetric C-bilinear on g, given as the complexification of an R-bilinear
form on ggr. Sine B is non-degenerate, it identifies g and g*; the resulting
bilinear form on g* will be denoted by B*.

We denote by t C g a Cartan subalgebra, obtained by complexifying a
maximal abelian subalgebra tg C gr. Let R C \/—71’(]”{{ be the set of roots
of g, and g, C g the root space corresponding to the root a € fR. Fix a
positive Weyl chamber t,, corresponding to a decomposition R = Ry UR_
into positive and negative roots. We let e, € g for a € R be root vectors,
normalized in such a way that e}, = e_, and B(eq,e_4) = 1.

The weight lattice will be denoted P, and the set of dominant weights
P,. Then P, labels the irreducible finite-dimensional representations of
g. We let V(i) denote the irreducible g-representation of highest weight
1% € P+.

2. Harish-Chandra projections
Consider the nilpotent Lie subalgebras

ny = @ Yo,
aER+

with basis the root vectors e, for @« € R1. Then g = n_ Ht ® ny is the
standard triangular decomposition of g. The Harish-Chandra projection (§7,
Section 5.1)

pu:Ulg) = U(H) = S(1)
defined by this decomposition restricts to an algebra homomorphism on g-
invariants (cf. §7.5.2). We have, for all £ € t,

try, (ad(§)) = Z (o, &) =2(p, &)
aENR
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where p = %Zae%r «a € t* is the half-sum of positive roots of g. Conse-
quently
pu(Casg) = Cas¢ +2B*(p)

(cf. §7.5.4). This has the following well-known consequence.

ProprosITION 2.1. The action of the quadratic Casimir element Casg
in the irreducible unitary representation w: g — End(V') of highest weight
w € Py C t* is given by the scalar,

m(Casg) = B*(u+ p, p+ p) — B (p, p).

PROOF. Since V is irreducible, Casy acts as a scalar. To find this scalar,
evaluate on the highest weight vector v € V. Casy decomposes into two
summands according to U(g)! = (n_U(g)ny)' @ U(t). The first summand
acts trivially on v. The second summand is the Harish-Chandra projection
Cas¢ +2B%(p), and it acts on v as B*(u, p1) + 2B*(p, ) = B*(pn+ p, pu+ p) —
B*(p, p). O

REMARK 2.2. Note that if the bilinear form B is positive definite on
gr, then B* is negative definite on the real subspace space spanned by the
weights. In this case, the right hand side can be written —||u + p||? + ||p||?.

As a special case, suppose g is simple, and take V to be the adjoint rep-
resentation. The highest weight of this representation is, by definition, the
highest root amax of g. Let ). be the corresponding co-root (cf. Definition
4.3 in Appendix B), and

hY =14 (p, dyax)

max
the dual Cozeter number. The basic inner product on a simple Lie algebra
g is the unique invariant inner product such that Bpasic(0hax, Mnax) = 2-
Note that Bypagic is negative definite on gg.

PropoSITION 2.3. If g is simple, and B = Bpagsic @S the basic inner
product on g, the adjoint action of the quadratic Casimir is given by the
scalar

ad(Casy) = 2h".
ProoF. By §8, Proposition 2.1, ad(Casg) is the scalar,
B*(amax> amax) +2B* (ama)u P) = B" (ama)u amax) hY =2h". U

PROPOSITION 2.4. The basic inner product Byp,sic is related to the Killing
form Biining(€,€') = tr(ade ader), £,& € g by twice the dual Cozeter number:

Vv
Bkining = 2h” Bpasic-

PRrROOF. Let Causg4 be the Casimir operator relative to B’ = Bxilling-
Since g is simple, we have Bijling = tBpasic for soome t # 0, and hence
Casy = 1 Casg. By definition of the Killing form, the trace ad(Casy) equals
dimg. This shows that ad(Casg) acts as 1 in the adjoint representation.
Comparing with Proposition 2.3, it follows that } = 2h". O
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The Harish-Chandra projection for the Clifford algebras pc;: Cl(g) —
Cl(t) (87, Section 5.2) has interesting consequences as well. By §7, Proposi-
tion 5.9 we have

pci(a(9)) = B¥(p).

87, Proposition 5.13 specializes to

PRrOPOSITION 2.5 (Freudenthal-de Vries). The length squared of the el-

ement p s given by
. 1
B*(p,p) = 21 tr(ad(Casg)).

REMARK 2.6. The above version of the Freudenthal-de Vries formula,
valid for arbitrary bilinear forms, was formulated by Kostant. If g is semi-
simple and B = Bkiling, 50 that ad(Casg) = 1, one obtains the more stan-
dard version of the formula,

dim g
24

BI*(illing(py p) =

3. The p-representation and the representation theory of Cl(g)

The irreducible representation 7: g — End(V(p)) of highest weight p is
closely related to Clifford algebras. Many of the results in this Section are
due to Kostant [44]. However, our proofs are rather different. We begin
with the following simple observation.

PROPOSITION 3.1. Let E be a finite-dimensional Cl(g)-module. Let g act
on E via the map v: g — Cl(g). Then E is a direct sum of p-representations.

Proor. For £ € t, we have

(96) v(§) = (p,§) mod n_Cl(g)n,.
This shows that £ acts on highest weight vectors as a scalar (p,§). O

Thus, if F is a finite-dimensional Cl(g)-module, then any highest weight
vector v € E™ generates an irreducible representation U(g).v isomorphic
to V(p). To obtain a concrete model, take £ = Cl(g) with the left regular
representation of Cl(g) on itself. The line det(n;)det(n_) C Cl(g)" has a
unique generator

R € det(ny) det(n_)

with the property R?> = R. Equivalently, R is normalized by the property
pc1(R) = 1. In terms of (normalized) root vectors,

(97) R= H teqe_q € Cl(g).
aERL
PROPOSITION 3.2. There is an isomorphism of g-representations,
(98) Vip) =~(U(g))R.

PRrROOF. Since y(ny) C Cl(g)ny, it is immediate that R is a highest
weight vector. O
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We can also consider Cl(g) as a g X g-representation, by composing the
homomorphism ~: g — Cl(g) with the left and right regular representations
of Cl(g) on itself. That is,

(€1,&).2 = v(&1)z — 2v(&2)

for &1, &, € g. Take the Weyl chamber for g x g to be the product ty x (—t;).
The set of positive roots for g x g is then

Ry x {0} U{0} x R_,

and the space of highest weight vectors for a g x g-representation is the
subspace fixed by ny x n_. Proposition 3.1 shows that the highest weights
for the g x g-action on Cl(g) are all equal to (p, —p). The same is true for
all g x g-subrepresentations, in particular for y(U(g)) C Cl(g).

Given a finite-dimensional g-representation V', let End (V') carry the gx g-
representation obtained by composing 7: g — End (V') with the left and right
regular representations of End(V') on itself:

(1,&2).A=m(&1)A — An(&2).

If V(i) is an irreducible unitary g-representation of highest weight p, then
End(V(p)) is an irreducible unitary g x g-representation of highest weight
(11, —p), and with highest weight vector the orthogonal projection pry(,)n+
onto V' (u)™+.

PROPOSITION 3.3. The action of v(U(g)) by left multiplication on V (p) =
v(U(g))R defines an algebra isomorphism

End(V(p)) = ~(U(g)).

The space v(U(g))™*"= of highest weight vectors is spanned by the element
R.

PRrROOF. The element R is a highest weight vector for the g x g-action on
Cl(g), of weight (p,—p). Hence v(U(g))Ry(U(g)) C Cl(g) is an irreducible
g X g-representation of highest weight (p, —p). Using identities such as

1 1 1
5€—a(5€at_a)ea + 5€a o = 1,

one sees that 1 € y(U(g))Ry(U(g)), hence v(U(g)) € v(U(g))Ry(U(g))-
Since the right hand side is an irreducible g x g-representation, this inclu-
sion is an equality. In particular, v(U(g)) is irreducible, with R € v(U(g))
a highest weight vector. The action of v(U(g)) by left multiplication on
v(U(g))R = V(p) defines a gx g-equivariant algebra homomorphism v(U(g)) —
End(V (p)). Since both sides are irreducible g x g-representations, this map
is an isomorphism. O

PROPOSITION 3.4. There is a unique isomorphism of g X g-representations
Cl(t) ® End(V(p)) — Cl(g)
taking © ® pry (,ne to zR.
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PROOF. Let x € Cl(t). Since xR = Rz, we see that C1(t)R C Cl(g)™+*"~
is a space of highest weight vectors. As noted above, the highest weights
are necessarily (p,—p). Hence the g X g-representation generated by this
subspace has dimension

dim(CI(t)) dim(End(V (p))) = 24im 2%+ — odima — qim Cl(g).
This establishes that CI(t)R is the entire space of highest weight vectors:
CI(t)R = Cl(g)™+ <",
and hence that Cl(g) = Cl(t) x End(V(p)) as g x g-representations. O
Let us now restrict the g x g-action on Cl(g) to the diagonal g-action.
By Schur’s Lemma, the space End(V (p))? of intertwing operators V- — V' is
1-dimensional, and is spanned by Idy-(,). Hence, by passing to g-invariants,

Proposition 3.4 given an isomorphism of vector spaces, Cl(g)? = Cl(t). In
fact, one has:

THEOREM 3.5 (Kostant, Bazlov). The Harish-Chandra projection pcy
restricts to an isomorphism of algebras,

(99) pcr: Cl(g)g — Cl(f)

PRrOOF. By §7, Proposition 5.9 the map p¢ restricts to an algebra homo-
morphism on invariants. Hence, it suffices to show that (99) is a surjection
onto CI(t).

Using Lemma 3.7 below, we can choose a € U(g) ® U(g) with

a—1eU (n_@ny),
with the property

a. pry e = Ldy () -
The g x g-equivariant isomorphism from Proposition 3.4 takes Idy(,) ®z =
a.(pry (pnr @) to

f(z) :==a.(zR) € Cl(g)®.

Since

a—1eU (n_@®ny),

and since pcy is an algebra morphism on t-invariants, it follows that
pa(f(z)) = pai(a.(zR)) = pci(z.R) = pa1(z)pci(R) = =.
Here we used pci(R) = 1. O

REMARK 3.6. Note that the proof gives an explicit inverse map, f: CI(t) —
Cl(g)® to (99).

The proof of Theorem 3.5 used the following fact.
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LEMMA 3.7. Let w: g — End(V(u)) be an irreducible unitary repre-
sentation of g, of highest weight . There exists a € U(g) x U(g), with
a—1¢€ Ut(ny ®&n_), such that the action of a on End(V(u)) has the

property
a. pryuyn+ = Idy () -

PROOF. Let v be a highest weight vector of V (i), and v* € V(u)*
the linear functional defined by Hermitian inner product with v. Then
Pry(uyn+ = v®@v*. Let vy, ..., vy be an orthonormal basis of V'(u), consisting
of weight vectors, with v; = v the highest weight vector. Let a1,...,an €
U(n_) be elements such that v; = 7(a;)v, with a; = 1, and a; € Ut (n_) for
i > 1. Let v7 € V(p)* be the linear functionals defined by Hermitian inner
product with v;. Then v} = 7*(a;)v*, where @; is the complex conjugate,
and

N

qui QU = (Z m(a;) @ (@) (v ® v*)

i=1 i=1
corresponds to the identity element idy () € End(V(p)) = V(p) @ V(p)*.
Hence

N
a:= Zai ®a; € U(g) ®U(g)
=1
has the desired property. O

We now obtain a sharper version of Proposition 3.4, as follows. Observe
that Cl(g)? is the commutator of the subalgebra v(U(g)).

THEOREM 3.8 (Kostant). The multiplication map

Cl(g)* ®v(U(g)) — Cl(g)

is an isomorphism of algebras.

PROOF. Since the two factors Cl(g)? and v(U(g)) commute, and since
dim(Cl(g)?) dim(v(U(g))) = dim Cl(t) dim(End(V(p))) = dimCl(g), it is
enough to show that the product map is surjective.

For y € Cl(g)?, we have y — pci(y) € n_Cl(g)ny. By Theorem 3.5, it
follows that

Cl(g)°R = CI(t)R.
Using 7(U(g)) = v(U(g))Ry(U(g)), this shows
Cl(g)*v(U(g)) = Cl(g)*(U(9))R(U(9))
(U(g))CL(9)*Ry(U(9))
(U(g))CLHRY(U(g))
= Cl(g).

=7 Cl
=7 Cl
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REMARK 3.9. Theorem 3.8 was proved in Kostant’s paper [44] by a
different argument. As explained to us by Kostant in August 2003 at the
Erwin Schriodinger Institute, Theorem 3.8 implies Theorem 3.5. This was
independently observed by Bazlov [10]. In our approach, we used a direct
proof of Theorem 3.5 to obtain Theorem 3.8.

REMARK 3.10. Since the quantization map identifies Cl(g) = A(g) as
g-representations, Proposition 3.4 also shows that

Ag = At® End(V(p))
as g-representations. Passing to invariants,
(Ag)? = AL
In particular, dim(Ag)? = 2rak(9),

4. Equal rank subalgebras

We will consider a reductive Lie subalgebra £ C g of equal rank. With
no loss of generality, we may assume tg C gr. Let t C € C g be a Cartan
subalgebra, given as the complexification of a maximal Abelian subalgebra
tr C tr. The orthogonal complement of £ in g will be denoted p.

EXAMPLES 4.1. For any £ € gg, the centralizer £ = ker(ad(§)) C g is an
equal rank subalgebra. As extreme cases, one has ¢ = t and ¢ = g. Other
examples of equal rank subalgebras £ C g include:

(1) g of type Co (i.e. sp(4)), € of type A1 x Ay (i.e. su(2) x su(2)).
(2) g of type Ga, ¢ of type Ay (i.e. su(3)),

(3) g of type Fy, t of type By (i.e. spin(9)),

(4) g of type Eg, £ of type Dg (i.e. spin(16)),

REMARK 4.2. A classification of semi-simple Lie subalgebras of a semi-
simple Lie algebra was obtained by Dynkin [27], following earlier work of
A. Borel and J. de Siebenthal [11] who classified equal rank subgroups of
compact Lie groups. Dynkin’s result may be summarized as follows. Let
ai,...,qp be a set of simple roots for g, identified with the vertices of the
Dynkin diagram. For each simple root «;, there is an equal rank Lie sub-
algebra £ C g having as its set of simple roots the «;, j # ¢, together with
the lowest root cg = —auax of the simple summand g’ of g containing the
root space go,. That is, the Dynkin diagram of £ is obtained from that of g
by first replacing the component containing «; (i.e. the Dynkin diagram of
g') with the extended Dynkin diagram, and then removing the vertex a; to
obtain an ordinary Dynkin diagram. ! The resulting semi-simple equal rank
subalgebra £ is a maximal Lie subalgebra of g if and only if the coefficient

1Suppose g is simple, and let Gr be the compact, simply connected Lie group with
Lie algebra gr. Then the Lie algebras £r obtained by this procedure are the Lie algebras
of centralizers Kg of elements g = exp(), where £ is a vertex of the Weyl alcove of G. Up
to conjugacy, these are precisely the centralizers that are semi-simple.
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of a; in the expression amax = > y kja; is a prime number. Dynkin proved
that any semi-simple equal rank £ is obtained by repeating this procedure a
finite number of times. For details, see [60] or [54].

We denote by R C Ry C t* the set of roots of £ C g, and let R, be its
complement. The choice of a decomposition Ry = Ry | UMR, _ into positive
and negative roots induces similar decompositions for R, R,. We denote

by
1
Pe =3 Z @
aemggr
the half-sum of positive roots of g, and similarly define py and p,. Then
Pg = Pe+ Pp.

Let p = p.®p_ be the Lagrangian splitting of p defined by the decomposition
into positive and negative roots:

b+ = @ 9o, P- = @ Ja-

ac€NRp + acNRp, -

We will use it to define a spinor module

Sp = Cl(p)/Cl(p)p+ = Np-—
over Cl(p). Let o: Cl(p) — End(S;) be the Clifford action on the spinor
module.

REMARK 4.3. The decomposition p = p4 @ p_ (or equivalently the cor-
responding complex structure on pg) is not ¢-invariant, in general. Hence
g=pL ®EEp_ does not in general define a triangular decomposition in the
sense of Section §7.5.1. It does define a triangular decomposition in case £
is the centralizer in g of some element £ € tg.

The spinor module S, carries a representation of £, defined by the Lie

algebra homomorphism

i &= Cl(p)
followed by teh Clifford action 9. We will refer to this action as the spinor
representation of € on Sy.

On the other hand, Ap_ carries a representation of t by derivations of
the super algebra structure, extending the adjoint action on p_. We will
denote this action by ¢ — ad(£). The two representations are related as
follows.

PROPOSITION 4.4. Under the identification Sy, = Ap_, the adjoint action
of t on Ap_ and the spinor representation of t C € on Sy are related by a

pp-shift:
o(p (&) = ad(§) + (pp,§), €t

ProOF. This is a special case of case (3) in §4.2.1, applied to V = p_,
with A = adg |p, € gl(p4) C o(p). Here

Lir(4) = (pp, €). O
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Fix an ordering on R, ;. Then Ap_ has a basis
VX = NaeXC-a
where X ranges over subsets of Ry 4.

PROPOSITION 4.5. The weights for the €-action on Sy are the elements

of the form
VX = Pp — Z @
aceX

where X ranges over subsets of Ry 1. The multiplicity of a weight v is equal
to the number of subsets X such that v = vx.

PRrOOF. The basis vector vx is a weight vector for the adjoint action of
t, with corresponding weight — > .y a. It is thus also a weight vector for
the Clifford action of t, with the weight shifted by pj. O

For any completely reducible t-representation on a finite-dimensional
super space W, with weight spaces W,,, define the formal character

ch(W) = ch(WP) — ch(W?) = Y " (dim(W)) — dim(W,}))e".
Basic properties of the formal character include,
ch(W & W') = ch(W) + ch(W’),
ch(W @ W') = ch(W)ch(W'),
ch(W*) = ch(W)*.

The character for the adjoint representation on the super space Ap_ =
Raem, . NMCe—a) is

chinp-) = [ (1-e),

a€Rp 4+

and the character for the spinor representation on S; is obtained from this
by a py-shift. Thus

ch(Sp)=e? J[ (1—e)

Ny, 4

— H (ea/Z_efa/Z).

a€Rp 4

REMARK 4.6. We can also view S, as an ungraded g-representation.
Repeating the calculation above without the signs, we find that its character
is Haemp . (e*/24e=*/2). We claim that for £ = ¢, this is in fact the character

of the p-representation:
(100) ch(V(p) = [ (e +e /).
acR4
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To see this, consider Cl(g)R as an ungraded g-representation, where g acts
by v: g — Cl(g) followed by the left regular representation of g on itself. As
a representation of t C g, it breaks up into 2! copies of the spinor represen-
tation of t on Syui:

Cl(g)R = Cl(n_)R® CI(t) = S;1. @ CI(t),
hence the character is 2! [Toen, (e%/2 + e=%/2). On the other hand, we had

seen that Cl(g)R consists of 2! copies of the p-representation, hence the
character is 2'ch(V(p)). Comparing, we obtain Equation (100). We see in
particular that Sy is isomorphic to V(p) as a t-representation.

Let Wy C Wy = W be the Weyl groups of £ C g. Define a set
Wp == {’UJ S W| 9%3,;. C wi)‘i+}

In terms of the Weyl chambers t C t¢ determined by the positive roots,
the definition reads

Wy = {w € W[ wty Dt}
For any w € W denote by
%Jﬁw = SRJF NwR_
1

the set of positive roots that become negative under w™".

LEMMA 4.7. (1) For allw e W,
p—wp= Z a.
Oée%+,ll)

If X C Ry is a subset with p—wp =) cx a, then X =R 4.
(2) we W, if and only if Ry W C Ry +.
(3) The map
Wg X Wp — VV, (wl,wg) — W1wW9
is a bijection; thus W, labels the left cosets of Wy in W.
(4) If w € W,, the element wp — pg is weight of Sy of multiplicity one.

PROOF. (1) The first part is Lemma 6.9 in Appendix B; the second
part follows from Proposition 4.5, since wp has multiplicity one.
(See also Remark 4.6.)

(2) We have R, ,, C R, + if and only if the intersection
%_Aﬁw N 9'{374, = wAR_ N %{374,

is empty. But this means precisely that Ry . C wR, i.e. w € W,.
(3) Let w € W be given. Since R NwRy is a system of positive roots
for €, there is a unique wy; € W with

w1Re+ = Re NWR L C wR,.
Thus wy = wflw satisfies Mg C woeNRy, ie. wy € Wy
184



CHAPTER 8. APPLICATIONS TO REDUCTIVE LIE ALGEBRAS

(4) Suppose w € W,. By (1) and since p = p¢ + pp, we have

wp—pe=pp— Y, o
OzEfR.&.,w
moreover X = Ry, is the unique subset for which this equation
holds. Hence, by Proposition 4.5 wp — pg is a weight of multiplicity

one.
(]

We will now now assume that B is positive definite on gg, thus ||u||* =
—B*(u, p) for p € P®zR. We will find it convenient to introduce the nota-
tion (u|lv) = —B*(u,v). A weight u for a finite-dimensional g-representation
V will be called a g-extremal weight if ||+ p|| is maximal among all weights
of V. Note that this notion depends on the choice of positive Weyl chamber
(or equivalently, of ;). The following Lemma is proved in Section 10 of
Appendix B.

LEMMA 4.8. If p € P(V) is a g-extremal weight, then the corresponding
weight space is contained in the space of highest weight vectors: V,, C V"+.
In particular, V(p) appears in V' with multiplicity equal to dim V.

In particular, for an irreducible g-representation the highest weight is the
unique g-extremal weight. As another example, the weights wp—pg, w € W,
for the t-representation on S, are exactly the -extremal of Sy,. Indeed, if v
is any weight of Sy, then v + pg is a weight of V' (p). Hence ||nu + pe|| < ||p]].
Equality holds if v + py = wp for some w € W, but as we saw wp — p is a
weight of Sy if and only if w € W,,. More generally we have:

PROPOSITION 4.9. Let € C g as above. For any g-dominant weight
ne P+z
w(p+p)—pe, weW,
are t-extremal weights for the t-representation V() ® Sy, each appearing
with multiplicity one. The irreducible €-representation with highest weight
w(p 4 p) — pe appears in the even (resp. odd) component, depending on the

parity of l(w).

Proor. Write V' =V (u). The weights of V' ® S, are sums v = vy + v,
where v is a weight of V' and 15 is a weight of S,. Given such a weight,
choose w € W such that w1 (v+ pe) lies in the positive chamber for g. That
is,

(101) (W™ (v + pr)ler) = 0

for all & € R. Since p is a weight of Sg~1, the sum v5 4 pg is among the -
weights of S = Sy ®@SyneL, i.e. it lies in P(V(p)). Hence also w™(va+pe) €
P(V(p)). It follows that

p=w(watp)+ Y ke
acRy
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1

with k, > 0. Similarly, since w™" v is a weight of V,

0= w4+ Z loo

OéEfR+
where [, > 0. Adding, we obtain

ptp=wlw+p)+ Y (ka+la)o
aERy

Using Equation (101), we obtain
I+ pll = llw™ (v + po)l| = |lv + pell,

with equality if and only if all l,, k, are zero. The latter case is equivalent
to v1 = wp and vy = wp — pg. Since these are indeed weights for V' resp. Sy,
it follows that their sum v := w(u+ p) — pe is a £-extremal weight for V ®S,.
Since v + pg lies in the interior of the positive chamber for €, while u+ p lies
in the interior of the positive chamber for g, the equality w(u+ p) = v + pe
shows w € W,. Note also that w is uniquely determined by the equation
w(p+p) = v+ pe. Suppose conversely that w € W, is given, and that vy, v
are weights for V, S, with v1+vp = w(u+p)—pe. The argument above shows
that 11 = w'p, v9 = w' p—p for some w’ € W. But then w(u+p) = w'(u+p),
thus w’ = w. This shows that v, v5 are uniquely determined. It follows that
the weight w(u+p)—pe of V. ®S, has multiplicity one, and the corresponding
weight space is just the tensor product Vi, ® (Sp)wp—p,- The weight space
has even (resp. odd) parity if and only if (Sy)wp—p, has even (resp. odd)
parity, if and only if [(w) is even (resp. odd). O

5. The kernel of Dy

We keep our assumption that B is the complexification of a positive defi-
nite invariant symmetric bilinear form on gg. Then S, acquires a Hermitian
structure, and Cl, acts unitarily. Fix an irreducible unitary g-representation
V = V() of highest weight p. Then U(g) ® Cl(p) acts on V ®S,, and hence
the relative Dirac operator D(g,t) € (U(g) ® Cl(p))® is represented as a
£-equivariant, skew-adjoint odd operator

Dy € End(V ®S,).

We are interested in the kernel of Dy. Denote by M(v) the irreducible
t-representation labeled by a dominant £-weight v.

THEOREM 5.1 (Kostant [45]). As a t-representation, the kernel of the
cubic Dirac operator on' V ® Sy is a direct sum

ker(Dy) 2= @ M(w(p+ p) — pe)-
weWp

Then even (resp. odd) part are given as sums over w € Wy, with l(w) even
(resp. odd).
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PROOF. Since Dy is skew-adjoint, its kernel coincides with the kernel of
its square. We will hence determine ker(D? ). Consider the decomposition

v

into the ¢-isotypical components, labeled by ¢-dominant weights. (We use
a subscript [v] to avoid confusion with the weight space.) Since Dy is ¢
invariant, it preserves each of these components. Using the formula

D(g, t)* = Casy —j(Case) — ||p||* + || pe||?

(cf. Equation (88) and §8, Proposition 2.5), together with the formula for
the action of the Casimir element in an irreducible representation (cf. §8,
Proposition 2.1), it follows that the operator D%/ acts on each f-isotypical
subspace (V ® Sp),) as a scalar,

—[lp+ pll* + [lv + pel >

In particular, ker(D3 ) is the sum over all £-isotypical components for which
lln+ pl| = ||V + pe||. Proposition 4.9 shows that the corresponding weights
v appear with multiplicity one, and exactly the weights v = w(u + p) — pe
with w € W,. (We see once again that these weights are £-extremal, since
Dy is skew-adjoint and hence D‘Q, is non-positive.) O

Following Gross-Kostant—Ramond-Sternberg [31] and Kostant [45], we
will refer to the collection of irreducible representations

M(w(p+p) —pe), weW,

as the multiplet indexed by p. Note that an irreducible £-representation of
highest weight v belongs to some multiplet if and only if v+ py is a g-weight
which furthermore is regular for the W-action.

THEOREM 5.2 (Kostant [45]). The dimensions of the irreducible repre-
sentations in each multiplet satisfy

> (=1 dim M (w(p + p) — pe) = 0.
weWy
PRrOOF. The exact sequence
(102) 0= ker(Dy)’ = (V®5S,)°" 2% (V®S,)! — coker(Dy)! — 0
together with coker(Dy )1 2 ker(Dy)! gives dim(ker(Dy)?) = dim(ker(Dy)1).
O

Using §8, Proposition 2.1, it is immediate that Casg acts on the multiplet
indexed by p as a constant — ||z + p||> + || pe||>. In fact, much more is true.
Let U(g)? — U(¥)* correspond to the inclusion (Sg)? — (S€)* under the
Duflo isomorphism. (Cf. §7, Theorem 4.12.)
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THEOREM 5.3. [31, 45] Let y € (U£)* be an element in the image of
U(g)® — U(8)t. Then the action of y on the members of any multiplet

M(w(p+p) —pe), weW,
is independent of w € W).

PROOF. Let # € U(g)? be given, and y € U(#)! its image. By §7,
Theorem 4.12, there exists z € W(g, &) = (U(g) @ Cl(p))* with

z—3j(y) = [D(g, 1), 2,

where j: WE — Wy is a morphism of £-differential algebra defined in that
section. Under the action of W(g, ) on ¢ € ker(Dy) C V ®S,, this identity
gives
x.¢ = j(y)-¢ = Dy (z.9).

Since D(g,t) € W(g,t) commutes with elements of j(W¥), the action of
j(y) preserves ker(Dy). On the other hand, D(g,t) also commutes with
elements of (Ug)? C Wg, hence also = preserves ker(Dy). We conclude
that 2.9 — j(y).¢ € ker(Dy), hence z.¢ € ker(D%) = ker(Dy). This proves
Jj(y).¢ = x.¢. But the action of x € (Ug)? on ker(Dy ) is the scalar by which
x acts on V(). O

REMARK 5.4. As announced by Gross-Kostant-Ramond-Sternberg [31]
and proved in Kostant’s article [45], this property characterizes the triplets:
Among the ¢-dominant weights v such that v4pg is a regular weight for g, any
triplet is determined by the values of elements in the image of U (g)® — U (¥)*.

Another appplication is the following generalized Weyl character for-
mula.

THEOREM 5.5 (Gross-Kostant-Ramond-Sternberg [31]). Let V(i) be the
irreductible g-representation of highest weight . Then

S wew, (=1 eh(M(w(p + p) = pe))

[aem, , (622 —e7o/2) '
PrROOF. Write V = V(u). The exact sequence (102) shows that
ch(V ®Sy) = ch(ker(Dy)).

ch(V(n)) =

But
ch(V ®S,) = ch(V)ch(S,) =ch(V) [] (e*/2—e /%),
acRy 4
Ch(ker(Dv)) = Z (_1)l(w)ew(u+f7)_ﬁ7& D
’UJGWP
If i = 0, one obviously has ch(V(0)) = 1. Hence
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COROLLARY 5.6.

H (ea/2 _ e—a/2) _ Z (_1>l(w)ewp—pg

a€Rp + weWy

For ¢ = t, the GKRS character formula specializes to the usual Weyl
character formula:

Zwew(_l)l(w)ewwﬂ)
HaEfRJr (ea/2 _ efa/g) .

6. g-dimensions

(103) ch(V(p)) =

Kac, Moseneder-Frajria and Papi [39, Proposition 5.9] discovered that
the dimension formula for multiplets generalizes to ‘q-dimensions’. We recall
the definition: Let g be a semi-simple Lie algebra with given choice of R,

and o1, ...,q; the corresponding simple roots. Let p¥ be the half-sum of
positive co-roots . Alternatively, pV is characterized by its property
{a,p’y =1

for every simple root « of g. The g-dimension of a g-representation is defined
as the polynomial in g,

dimg(V) = > dim(V,,)g"*")

(Other normalizations exist in the literature.) One has the following formula:

PrOPOSITION 6.1. The g-dimension of the irreducible representation
V(u) of highest weight € Py is given by the formula,

. o+ p,a
dlmq(V(/,L)) = H [< [< a\/>] >]q
aERL P g
with the q-integers
qn/2 _ qfn/2

[n]g = gz _ g2
PROOF. By the Weyl character formula (103),

. B Zwew(—l)l(w)q<w(“+")’pv>
dlmq(v(.“)) - Ewew(_l)l(w)q<wp’pv>
_ Suew(—1)@ghten o)
TS e (C1)@) gl oY)
_ H q(/f“+p7av>/2 — q_<u+p7av>/2
q<l)70¢v>/2 — q‘(Pvav>/2

aER4
_ ({1 + p, Mg
-1 T
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For ¢ — 1, one has lim,_,1[n|, = n, and one recovers the Weyl dimension
formula,

(V) = [ Y20

(Indeed, the proof above is the standard proof of the dimension formula,
cf. Duistermaat-Kolk [26, Chapter 4.9].) As a special case, note that

dim(V (p)) = 217+,

aERL

LEMMA 6.2. [39, Lemma 5.8] Suppose g = € @ p as above, where g is
a semi-simple Lie algebra, and € C g is a semi-simple subalgebra of equal
rank. There exists a root o € Ry, with

<Oé,p%/> = 0.

More generally, if € C g are equal rank reductive Lie algebras, there exists
an element py € t (not unique) such that (o, pe) = 1 for all simple roots of
€, and (o, pe) = 0 for at least one o € Ry.

PrOOF. We first assume ¢ semi-simple. Consider a chain t=g; C --- C
gn = g of subalgebras with g; maximal in g; 1. Then each g; is a semi-simple
subalgebra, and the set of roots of g; is a subset of those of g. We may thus
assume that £ is maximal in g. Furthermore, by splitting g into its simple
components we may assume that g is simple. Let a1, ...,a; be the simple
roots, and let amax = Zj k;a; the highest root. The coefficients k; are
called the Dynkin marks. According to results of Borel-de Siebenthal [11],
Dynkin [27] and Tits [60], the maximal? equal rank semi-simple subalgebras
are classified (up to conjugacy) by the set of all i € {1,...,l} for which the
Dynkin mark k; is prime. More precisely, the set of simple roots of the
subalgebra is

{Oco,...,C/M\Z‘,...,Oél}
with ag = —amax. Writing a; = k%(amax — Z#i kja;) we obtain
1 h
(i) = (1= kj) =1—
ki i ki

where h = 1 + (amax, p”) = 1 + Zj k; is the Coxeter number. It is a
standard fact (which may be verified e.g. by consulting the tables for simple
Lie algebras) that every prime Dynkin labels k; divides the Coxeter number
h. Hence (a;,py) € Z. This proves the existence of a root o € R, with
(a,pf) € Z>p. If (o, pf) > 0, then (o, 3Y) > 0 for some simple root 3 of €.
Thus o — 8 is a root. Since [€,p] C p, one has o — € Ry, and

(o =B, p) = (a, pe) — 1.

2A Lie subalgebra ¢ C g is called maximal if it is not contained in a Lie subalgebra
other than ¢, g.
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By repeating this procedure, one eventually finds the desired root in R,
whose pairing with py is zero. This proves the Lemma for g, ¢ semi-simple.
If £ is not semi-simple, let 3 # 0 be its center. Choose any root a € R, that
is not orthogonal to 3. For suitable £ € 3, we then have

(a, &) = (a, py),
so that py = p; — & has the desired properties. O

THEOREM 6.3 (Kac, Méseneder-Frajria and Papi [39]). Suppose ¢ is an
equal rank semi-simple subalgebra of g. The g-dimensions of the irreducible
t-representations in each multiplet satisfy

> (=1 dimg M(w(p + p) — pr) = 0.
weWy

ProOOF. By the generalized Weyl character formula, Theorem 5.5, the
left hand side of the displayed equation equals

dim, (V) H (q<0‘vl72/>/2 _q<a7pgv)/2)
O(Gmpd_

where V is viewed as a £-representation by restriction. By Lemma 6.2, at
least one factor in the product over 3R, ; is zero. ]

As pointed out in [39], the results extends to arbitrary equal rank re-
ductive subalgebras ¢ C g, provided the g-dimension is defined using ﬁ}/ (cf.
Lemma 6.2) instead of p .

7. The shifted Dirac operator

Return to the full Dirac operator D € U(g) ® Cl(g) for a reductive
Lie algebra g. (We still assume that B is positive definite on gr.) Fix a
unitary module S over Cl(g), and let V' = V(i) be an irreducible unitary
g-representation of highest weight p. Then D becomes a skew-adjoint odd
operator Dy on V ®S. Since D? = Casy —||p||?, the action on V ®S is as a
scalar, —||u + p||>. In particular, D is invertible as an operator on V ®S.

As noted by Freed-Hopkins-Teleman [29], one obtains interesting results
by shifting the Dirac operator by elements 7 € v/—1g:

D,=D-1€U(g)®Cl(g)
Note that D, no longer squares to a central element, but instead satisfies
D2 = Cas—||p||> + B(r,7) — 2(7 + (7).
We denote by 7* = B’(7) € v/—1g* the image of 7 under the isomorphism
g = g* defined by B. Then B(r,7) = B*(7*,7*) = —||7*||?>. The element

D, is represented on V' ® S, as a skew-adjoint operator. The identity above
becomes

D? =— 2 17|1? = 2L(7).
lves i+ pll” = [I77]| (1)

where L(7) indicates the diagonal action of 7 € gon V ®S.
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PROPOSITION 7.1 (Freed-Hopkins-Teleman [29]). Let V- = V(u) be the
irreducible representation of highest weight u € P.. For T € \/—1g, the
operator D on V ® S is invertible, unless 7 lies in the coadjoint orbit of
-+ p. Moreover, for " = p+ p the kernel of Dy is on V ®S is the weight
space (V @9S)u4p =V, ®S,.

PROOF. Since the map 7+ D, is Gr-equivariant, we may assume that
7 lies in the positive Weyl chamber. In particular, D, is then t-equivariant,
and hence preserves all weight spaces. On the weight space (V ®S), # 0
the operator D? acts as
DY ygs), = ~lln+pll? =172 =2(v,7) = ~[lu+p—7*|P+2(u+p—v,7).
The weight v is a sum of weights 11 of V and v, of S. Both u—vq and p—vs are
linear combinations of positive roots with non-negative coefficients, hence so
is g+ p — v. Hence both terms in the formula for Dﬁ‘(v(g)s) are < 0. Hence

D? is non-zero on the weight space (V ® S), unless
p+p—1=0, (u+p—v,7)=0.

But 7" = p + p implies that 7 lies in the interior of the Weyl chamber, and
hence the condition (u+ p — v, 7) = 0 forces v = p + p. It follows that the
kernel of D2 on V ®S is the highest weight space, (V ®S),4, =V, ®S,. O

The Proposition shows that the family of Dirac operators 7 — D,
on /—1gi (viewed a a representative for an equivariant K-theory class)
has support the coadjoint orbit of Gr.(x + p). As shown in [29], the Gg-
equivariant K-theory class of this family of operators is identified with the
class in Kg(pt) = R(G) defined by the representation [V].

8. Dirac induction

In contrast to the previous sections, we will denote by t, ¢, g, ... compact
real Lie algebras, and €, €€, gC, ... the reductive Lie algebras obtained by
complexification. The corresponding Lie groups will be denoted T', K, G, . ..
and TC, K€ GC, ... respectively. We will discuss ‘Dirac induction’ from
twisted representations of equal rank subgroups K C G of a compact Lie
group, using the cubic Dirac operator. It may be viewed as analogous to the
process of holomorphic induction, but works in more general settings since
G/K need not carry an invariant complex structure. This Section draws
from the papers by Kostant [45, 46] as well as from [61, 50, 38].

8.1. Central extensions of compact Lie groups. We will need some
background material on central extensions of Lie groups G. In this Section,
central extension will always mean a central extension by the circle group,

1%U(1)~>@%G~>1.

We will refer to the image of U(1) in this sequence as the central U(1) (in
G ), even though there may be other U(1) subgroups of the center.
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A morphism of central extensions is given by a commutative diagram

~

1 —— UQ) K K 1
EE
1 —— U(1) G G 1

where the vertical maps are group homomorphisms. If a morphism K — G
is given, one can use the diagram to define a pull-back of a central extension
of G to a central extension of K. R

An automorphism of a central extension G is a morphism from the cen-
tral extension to itself. That is, it is a Lie group automorphism of G com-
muting with the action of the central U(1). The automorphism is called a
gauge transformation of G if the underlying group homomorphism of G is
the identity. It is easy to see that the group of gauge transformations of a
central extension G is the abelian group

Hom(G,U(1))
of all group homomorphisms G — U(1). More generally, any two morphisms
of central extensions K — G with a given underlying map K — G are related
by a gauge transformation of K. In particular, if G is isomorphic to a trivial

central extension G x U(1), then any two trivializations are related by an
element of Hom(G, U(1)).

We will label central extensions by a notation é(”); the trivial central
~ — +
extension is denoted G(©) = G x U(1). The exterior product Gy x Gz(m ")
of two central extensions is defined by the commutative diagram,

1 — U(1) —— (é\l(m)xé,;(m)) < U(1) é\l(nl) " (/;\2(52) .

l- | I

1 — U(1) —— G;<\G2(m+m) — G1 x G — 1

where the upper horizontal line is a trivial central extension, and the middle
vertical map is the quotient map for the action

(w1, w2).(q1, G2, 2) = (gAlwl_l,g’\gwg_l,wlwgz)
of U(1) x U(1). If G; = G2 = G, we define an (interior) product Glrith2)
as the pull-back of the exterior under the diagonal inclusion G — G x G.
Finally, the opposite G of a central extension G*) is a quotient of the
trivial central extension G x U(1) by the action w.(g, z) = (Gw L, zw™1).
As the notation suggests, the product of G and G is canonically iso-
morphic to the trivial extension.

For a compact, connected Lie group G, the group of isomorphism classes
of central extensions of G by U(1) is canonically isomorphic to the cohomol-
ogy group HZ(pt,Z) = H3(BG,Z). (Cf. [53] for some details.) Note that
H3(pt,Z) is a torsion group. Hence, if G® is a given central extension
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of GG, then there exists m > 0 such that G(me) ig isomorphic to the trivial
central extension. In particular, the central extension is isomorphic to the
trivial central extension on the level of Lie algebras. Indeed, the choice of
an invariant inner product on gi*) defines a splitting of the extension, by
embedding g as the complement of u(1) C (). The splitting is unique up
to a Lie algebra morphism g — R, i.e. up to an element of (g*)e.

8.2. Twisted representations. Suppose G is a compact, connected
Lie group. Given a central extension é(”‘), we define a x-twisted representa-
tion of G to be a representation of G — U(V') where the central circle acts
with weight 1. One may think of a k-twisted representation as a projective
representation G — PU(V') together with an isomorphism of G%) with the
pull-back of the central extension 1 — U(1) — U(V) — PU(V) — 1. The
isomorphism classes of x-twisted representations form a semi-group under
direct sum; let R(”)(G) denote the Grothendieck group. The tensor product
of representations defines a product

(104) R")(@Q) x R¥2)(@) — R +r2) (@),

In particular, R*)(G) is a module over R(O)(G) = R(G).

Fix a maximal torus T' C G, and let P = Pr = Hom(T,U(1)) be the
weight lattice of T. We will consider Pr as a subset of /—1t*, consisting of
all v € ()€ such that (v, &) € 2my/—1Z whenever ¢ € t is in the kernel of
expp: t = T. Let T®) G be the maximal torus given as the pre-image
of T, and define the k-twisted weights

P = P ¢ Hom(T™, U(1))

be the homomorphisms whose restriction to the central U(1) is the identity.
Thus, the affine lattice P}K) labels the isomorphism classes of x-twisted
representations of T'; in particular R*")(T) = Z[Pq(f)]. P}K) is the affine
sublattice of Pg(.) = Pg(. given as the pre-image of the generator of Py q).
Tensor product of twisted representations of T (cf. (104) for G = T') gives
an ‘addition’ map

P:l(wm) % P}KQ) . Pj(ﬂm-i—mX

The image of the roots 9t C t* of G under the inclusion inclusion t* — (t*))*
are the roots of G(*), and will be identified with the latter. We denote by
PéHJ)r the corresponding dominant x-twisted weights. Then P((fi_ labels the

irreducible k-twisted representations of GG, and

REMARK 8.1. As mentioned above, any central extension G® of a com-
pact connected Lie group becomes trivial on the level of Lie algebras. The
restriction of a given Lie algebra splitting g — g to t — t(*) dualizes to
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give a projection, (t(”))* — t*, and embeds Péﬁ) as a subset of t* of the form
Py = Py + 60,

The ‘shift’ 6" e /=T1¢* is defined modulo Pg; changing the trivialization
by an element of (g*)? C t* modifies 6(*) accordingly.

8.3. The p-representation of g as a twisted representation of
G. Let G be compact and connected Lie group, with a given invariant inner
product on its Lie algebra g. Define a central extension G as the pull-back
of the central extension

1 — U(1) — Spin.(g) — SO(g) — 1

under the adjoint representation G — SO(g). Note that G is associated
to a central extension of G by Zs, obtaind by pulling back the double cover
1 — Zo — Spin(g) — SO(g) — 1. It follows that this central extension is
‘2-torsion’:

LEMMA 8.2. Suppose 1 — Z; — G — G = 1 is a central extension of
G by Zy, for somel > 2, and

G = G %z U(1)

for the natural action of Z; as a subgroup of U(1). Then the central extension
GU%) s canonically isomorphic to the trivial central extension G\©).

Proor. The m-th power G(m") an associated bundle to the m-th power
of G(™*)_ The latter is

é(m/{) = é(ﬁ) XZ[ Zl;
where Z; acts on Z; by the m-th power, z.w = z™w. If m is a multiple of [,

this is the trivial action. In particular, G is canonically trivial, hence so
is GUr). O

Realize the p-representation of g as
V(p) =~(Ug).R C Cl(g),

as in §8, Section 3. If G is not simply connected, this representation need
not exponeniate to the group level, and indeed p need not lie in Pgy. But
it always integrates to a representation of G(@) where the central circle acts
with weight 1. (Indeed, since £ € g acts on y(Ug).R as multiplication by
~v(€), its exponential in the double cover of G acts as multiplication by
expc(7(€)) € Spin(g).) Thus V(p) is an irreducible o-twisted representation
of G. We denote by p € P((;Ui its highest weight. The splitting of the Lie
algebra of Spin,(g) determines a splitting g(®) = g x u(1). The resulting

inclusion Pc(f) — t* (cf. Remark 8.1) takes p to the half-sum of positive
roots, p.
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REMARK 8.3. Similarly, given any Clifford module S over Cl(g), the
resulting action of g on S exponentiates to a o-twisted representation of G
on S, isomorphic to a direct sum of V(p)’s.

Suppose K C G is a closed subgroup, with Lie algebra ¢ C g. Put
p==¢t- and let K (7) be the central extension of K defined as the pull-back
of the central extension

1 — U(1) — Spin,(p) — SO(p) — 1

under the adjoint representation K — SO(p). Again, this twisting is 2-
torsion. Any Clifford module over Cl(p) becomes a T-twisted representation
of K. Suppose K is a connected subgroup of maximal rank, and choose a
maximal torus " C K C G. Let Ri 4 C Ry be positive roots of K C G
relative to some choice of Weyl chamber. Let S, be the spinor module
over Cl(p), equipped with the 7-twisted representation of K as above. It
need not be irreducible, in general (consider e.g. the case K = T). On the
other hand, every irredible component for the £-action is also an irredicible
component for the s-twisted action of K. Let p, be the highest weight if
the irreducible component whose underlying €-action has highest weight p;.

Similar to Example 77, P[((T ) has a canonical embedding into t*, under which

Pp goes to py. Letting pg € Pl(g ‘2 be defined similar as for K = G, we have

ﬁ - ﬁé + ﬁpv
using the addition P:(FOE) X P}T) — PZ(FU).
8.4. Definition of the induction map. Suppose now that G is com-
pact and connected, K is a maximal rank subgroup, and 7" a maximal torus

in K. Let K™ be the central extension of K described in Example ?7. We
will use the cubic Dirac operator to define induction maps

RE(K) = RW(G).

Let M be a (rk—7)-twisted representation of K. Then S§® M is a Zy-graded
k-twisted representation of K. Here Sp+ is the dual of the spinor module Sy.

REMARK 8.4. Recall from §3, Section 4 that the super space K =

1
Homgy(Sy, Sp+) is 1-dimensional, with parity given by (—1)2 dimp — (1)1,
Hence we may replace Sy = Sy @ K with Sy, provided the parity shift is taken
into account.

The L2-sections of the associated bundle

are identified with the K (®)-invariant subspace

~ . R ()
(105) T2(E) = (L2(GW) @ St o M)™
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where K(®) acts on L2(G(%)) by the right regular representation (k.f)(§) =
f(gl%), and on S; @ M by the t-twisted representation as above. Since the
central U(1) € K®) acts on Sy ® M with weight 1, and on L2(G™) with
weight —1, it acts trivially on the tensor product. That is, the K (®)_action
descends to an action of K, and the superscript in (105) may be replaced
with K. The group G*) acts on (105) via the left regular representation
on Lz(é(”)), (91-£)(9) = f(979). Since the left regular representation of
z € U(1) on L*G®) coincides with the right regular representation of
2~ € U(1), we see that the central circle U(1) ¢ G(®) acts with weight one
on (105). In (105), we may replace L2(G*)) with the subspace L2(G)®)
LQ(@(“) on which the left regular representation of U(1) has weight 1. Thus

(106) I'12(E) = (LX(G)"™ @ Sy @ M)F.

From the usual direct sum decomposition of the L?-functions on a compact
Lie group one obtains that

(107) G =PHvre vy,

where the sum is now over all level x representations m: G() — Aut(Vy).
Thus

TE) =PVre (VoS oM,

where V! is regarded as a K (®)_representation by restriction.
To obtain a finite-dimensional sk-twisted representation from the infinite-
dimensional space I';2(E), we use the relative cubic Dirac operator (cf. (89))

D(g.t) = 3 P euc +a(y) € Ulg) ® Cl(p).

Recall that Z‘(f) indicates summation over a basis of p. Since K has maximal
rank in G, we may identify p with the unique K-invariant complement to Bl
in g%, Thus we may also think of D(g, £) as an element of U (g*)) @ Cl(p);
indeed it is just identified with D(§®), €*)). The factor U(§*)) acts on V7,
while Cl(p) acts on Sg; this defines an action of D(g,t) on V; ®@ Sy @ M.
Since D(g, ) is K-invariant, it restricts to K-invariant elements, giving a
collection of skew-adjoint operators

i € End((Vy ®S; @ M)™).

Tensoring with the identity operator on V;, and summing over 7 one obtains
a skew-adjoint (unbounded) operator Dy, on the Hilbert space (L?(G)") @
S @M ). Since D)y is equivariant, its kernel ker(Dyy) is a s-twisted rep-
resentation of G. We will show below that the kernel is finite-dimensional.
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DEFINITION 8.5. The Dirac induction is the map from (k — 7)-twisted
representations of K to Zo-graded r-twisted representations of G, taking

M +— ker(Dyy).
It induces a map on isomorphiphism classes,
RE(K) = R¥(Q), [M] > [ker(Dp)°] — [ker(Das)Y,
taking [M] to the equivariant index of Dyy.
8.5. The kernel of Dj;. The following Theorem gives a direct charac-
terization of the Dirac induction map in terms of weights. For v € PI(('T I_T),

let M(v) denote the corresponding irreducible (k — 7)-twisted representa-

tion of K. Similarly, for u € Pgﬁ)+ we let N(u) denote the corresponding

irreducible k-twisted representation of G. Observe that
PR = PG =G,

The following is essentially a version of Kostant’s generalized Borel-Weil
theorem [45, 46], see also Landweber [50] and Wassermann [61, Section
20].

THEOREM 8.6. Let v € PI((H__FT) be given. If there exists w € W (neces-
sarily unique) such that

v+ pe=w(p+p)
for some p € P((-fl, then the Dirac induction takes M (v) to N(u), with

parity change by (—1)"®). The Dirac induction takes M(v) to 0 if no such
w exists.

Hence, on the level of Grothendieck groups of twisted representations,
the induction R*~7)(K) — R")(G) is given by

(M (@)] = (=1)[N (u))
if v+ pe = w(p+ p) for some w € W, while [M (v)] — 0 if no such W exists.

PROOF. Let M = M (v) with v € Rg';_;). Clearly,
ker(Dyy) = @ V¥ @ ker(D7y).
s

Identify
(Vi®S, ® M(v))" = Homp . ., (M), Vi® Sy)
Here we used that the equivariance condition relative to the action of the

connected group K(=7) is the same as that relative to its Lie algebra, but
£(5=7) = £ gince the twist 7 is torsion. As indicated in Remark 8.4, we
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write Sy = Sp ® K. Letting Dy denote the action of D(g, ) on V7 ® Sy, it

follows that

ker(D}y) = Homyg,, (M (v)*, ker(Dyx)) @ K.

Let pu € (?(“))* be the highest weight of V;. Then the dual E(”)—representation
V¥ has highest weight «u = wo(—p) with wg the longest Weyl group element
of W. Similarly, M (v)* has highest weight % = wg ¢(—v), where wy ¢ is the
longest element in Wy. By Theorem 5.1, the space

Homyg,., (M (v)*, ker(Dyx))

is zero unless there exists w; € W such that xu + p = wy (xev + pe), and in
the latter case the multiplicity is 1. The parity of this isotypical component
given by the length (—1) %),

Since woR—- = R4, one has xp = p, and hence *u + p = *(u + p) =
—wo(p + p). Likewise, *¢v + pg = —wo (v + p). We may hence re-write the
condition as

w(p+p) =v+ pe
where w = w,, éwl wg. Here the condition is written in terms of Lie algebra
weights; if we are using Lie group weights for the central extensions of K
resp. G, the same condition reads w(p + p) = v + pe. Since l(wp) = |R4|
and [(wo ) = |Re 4|, we have

(—=1)H®) = (—1)Hw)+ T4

The line K has parity (—1)®»+|. Hence ker(DF,) has parity (—1)1®). We
conclude that ker(Djy) is isomorphic to N (u) if w(u+ p) = v + pe for some
w € W, and the parity of ker(Djy) is given by the parity of I(w). O

REMARK 8.7. Let us briefly compare the Dirac induction with holomor-
phic induction R(K) — R(G). Let p = £ carry the complex structure
defined by the set R, 4 of positive roots. In general, this complex structure
is only T-invariant. Assume that it is actually K-invariant, hence defining
a complex structure on G/K. Given a K-representation M, the associated
bundle G X M is a holomorphic vector bundle. The space of differential
forms on G/K with values in this bundle, i.e. the sections of

G XK (M X Ap—)?

carries the Dolbeault-Dirac operator @ys. One defines the holomorphic in-
duction map by

[M] — [ker(Par)]-
In terms of weights, it is given by
M) (~1)) N ()

provided v = w(p + p) — p for some w € W, and zero otherwise. (If G is
not simply connected, p need not be in the weight lattice Pg. But p —wp is
a linear combination of roots with integer coefficients, and hence is always
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in Pg.) Similar to the discussion of Dirac induction, the computation of
ker(@as) may be reduced to an algebraic Dirac operator on spaces
V& Ap-,

where V' is an irreducible g-representation (viewed as a t-representation
by restriction). This program was carried out in Kostant’s classical paper
[43], over 35 years before [45]. A detailed comparison of the two induction
procedures can be found in [46]
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D(g,t) as a geometric Dirac operator

In the last Section we alluded to interpretations of the element D(g, £)
as a geometric Dirac operator over a homogeneous space G/K. We will now
discuss this interpretation in more detail.

1. Differential operators on homogeneous spaces

We begin with a general discussion of differential operators on homo-
geneous spaces G /K, where GG is a connected Lie group and K is a closed
subgroup. We denote by g, £ the Lie algebras of G, K.

PROPOSITION 1.1. [34, p. 285] Suppose ¢ C g admits a K-invariant
complement. Then the natural map DO(G)“*X — DO(G/K)% is onto, and
defines an isomorphism

DO(G/K)® =U(g)"/(U(s)1)" = (U(9)/U(9)t)".
PRrROOF. Let p be a K-invariant complement to €. Then
Ug) = U(g)t @ S(p)

by the PBW theorem. In fact this decomposition is K-equivariant, hence
it restricts to a decomposition U(g)X = (U(g)&)* @ S(p)¥. It follows that
U)X /(U(g)e)X = (U(g)/U(g)e)X = S(p)*. We want to identify this
space with DO(G/K). Under the identification of U(g) with left-invariant
differential operators on G, the algebra U(g)¥ corresponds to the G' x K-
invariant differential operators, where K acts from the right. By identifying
functions on G/K with right-K-invariant functions on G, one obtains a
map U(g)® — DO(G/K)%. Elements in U(g)€ vanish on right-K-invariant
functions (since the left-invariant vector fields generated by elements of ¢
generate right translations). We therefore obtain an algebra homomorphism

(108) S(p)X - DO(G/K)C.

To show that it is an isomorphism, it suffices to check that the associated
graded map

(109) S(p)* — Gr(DO(G/K)%)

is an isomorphism. We have p = T.x(G/K), so T(G/K) = G xi p. The
principal symbol of a differential operator of degree r on G/K is an element

of
D(G/K,G xk §"(p)% = 8" (p)"
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(where the isomorphism evaluates a G-invariant section at the identity coset).
This defines an injective graded algebra homomorphism

Gr(DO(G/K)Y) — Gr(DO(G/K))% = S(p)¥.

Its composition with (109) is the identity on S(p)®. Thus (109) is an iso-
morphism, and hence so is (108). O

REMARK 1.2. For a simple example where £ does not admits a K-
invariant complement, take G = SL(2,R) the real matrices of determinant
1, and K the upper triangular matrices with 1’s on the diagonal. The Lie
algebra of s[(2,R) consists of matrices of trace 0, and has a basis

e (00) = (00) - (58)

Thus e is a generator of £. We have
(111) ade(h) = —2e, ade(e) =0, ade(f)=h.

Since ad, is nilpotent (indeed (ad.)? = 0), it must have a non-trivial kernel
on any invariant subspace of g. But ker(ad.) = &, proving that ¢ cannot
have an invariant complement. The map S(g)®% — S(g/€)¥ is non-surjective
already in degree 1. Indeed, S'(g)® = g = € maps to 0, but S(g/€)X is 1-
dimensional, with generator the image h of h in g/€. The G-invariant vector
field on G/K defined by h provides an example of an invariant differential
operators on G/ K that does not lift to G x K-invariant differential operators

on G.

The Proposition generalizes to differential operators acting on vector
bundles. For any vector bundle E — M, let DO(M, E) denote the alge-
bra of differential operators on M acting on sections of E. The principal
symbol of differential operators identifies the associated graded algebra with

I'(S(TM) ® End(E)),

PROPOSITION 1.3. Suppose £ admits a K-invariant complement p in g.
For any K-module V', there is an isomorphism of filtered algebras

DO(G/K,G xg V) = (U(g) ® End(V))X /T 0 (U(g) @ End(V))¥.

Here T is the left ideal in U(g)@End(V') generated by the diagonal embedding
t—>gEnd(V), ¢E—1(€)=¢(@1+1@n(E).

PRrOOF. The algebra (U(g) ® End(V))¥ is identified with the G x K-
invariant differential operators DO(G, G x V)&*X on the trivial bundle G x
V. Tt acts as differential operators on G xg V using the identification
[(Gx V) =C>®(G,V)X. Elements in the image of the diagonal embedding
t — g ® End(V) annihilate all invariant sections, hence the same is true for
all elements in the left ideal Z. We claim that there is a K-invariant direct
sum decomposition

(112) Ug®End(V)=Z & (Sp ® End(V)),
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using the embedding Sp — Ug by symmetrization. To see this, give Ug ®
End(V) the filtration defined by the filtration of Ug, and let Z and F =
(Sp ® End(V)) carry the induced filtrations. From U(g) = U(g)t & Sp we

have
(113) U(g)() ®End(V) = I),) & Fir)
with 7/ = U(g)t ® End(V). But

Iy = Z{,y mod U(g)(—1) ® End(V),

hence an inductive argument deduces (112) from (113). The rest of the proof
is parallel to that for V' = R. [l

2. Geometric Dirac operators

Let M be a manifold with a pseudo-Riemannian metric B of signature
n,m. Let CI(T'M) be the corresponding Clifford module. A connection V
on T'M is called a metric connection if VB = 0, where

(VxB)Y,Z) =X B(Y,Z) — B(VxY,Z) — B(Y,VxZ).

Any two metric connections differ by some tensor S € QY(M, o(TM)). In a
local trivialization TM |y = U x R™™ (carrying B to the constant metric of
signature n, m), the exterior differential defines a ‘trivial’ metric connection,
and the given connection is of the form

Viy =d+ Ay

for a local connection 1-form Ay € QY (U, o(T'M)). By the Levi-Civita theo-
rem, the pseudo-Riemannian manifold (M, B) carries a unique metric con-
nection of vanishing torsion Ty = 0, where Ty is the tensor

To(X,Y)=VxY - Vy X — [X,Y].

We will denote the Levi-Civita connection by V¢, Given any metric con-
nection V such that the 3-tensor

Tv(X,Y,Z)=B(1Tv(X,Y), Z)

is skew-symmetric in X, Y, Z, the torsion free part is again a metric connec-
tion, hence it coincides with the Levi-Civita connection. That is,

VEUY) = Vx(Y) — $To(X.Y).

The metric connection may be viewed as a principal connection on the or-
thogonal frame bundle of T'M, hence it defines connections on all associated
bundles, i.e. all bundles associated to some representation 7: O(n,m) —
End(V).

In particular, one obtains connections on the Clifford bundle CI(T'M)
and on the exterior algebra bundle. In local trivializations, one again has
V|y = d — 7(Ay) where the letter 7 is also used for the infinitesimal repre-
sentation o(n, m) — End(V).
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Suppose now that & — M is a bundle of C1(T'M )-modules. The Clifford
action will be denoted ¢: CI(TM) — End(£). A connection V¢ on & is
called a Clifford connection if

VE(e(2)8) = o(V(2))9 + o(@) V¢
for all x € I'(CY(T'M)), ¢ € I'(€). Here V is the given metric connection on
TM, and the same notation is used for its extension to CI(T'M). Any two

Clifford connections differ by a section of Endgyrar)(€). Given a Clifford
connection, one defines the corresponding Dirac operator

P T(E) = T(E)

as a composition

£
I'(E) L T(T M ® £) -2 T(E).
(using B to identify T*M with TM). In terms of a local frame e, of TM,
with B-dual frame e?,
Pe =2 ol Ve,
3. Dirac operators over G

Let G be a Lie group, with an invariant quadratic form B on its Lie
algebra. Let T'G carry the corresponding bi-invariant pseudo-Riemannian
metric, still denote by B.

PROPOSITION 3.1. There is a unique left-invariant connection V™ on
TG, with the property that

(114) VvV (Y)=0, X,YeXx(@)r
on left-invariant vector fields. Its values on right-invariant vector fields are
(115) V¥l Y)=[X,Y], X,Y €Xx(G"

In fact (114) holds whenever Y is left-invariant, and (115) holds whenever
X is right-invariant. The torsion of V" is given by T(X,Y) = —[X,Y] if
both X, Y are left-invariant, and by T(X,Y) = [X,Y] of both X, Y are right-
invariant. The connection V"™ is a metric connection, i.e. V"B =0, and
its geodesics are the left-translates (or equivalently the right-translates) of the
1-parameter subgroups of G.

Equation in (114) says that V" is the ‘trivial’ connection relative to
the left-trivialization of T'G.

PROOF. For arbitrary X,Y € X(G) define V% by
L(v?(at(y))gL = EXLYGL = L[X7y}0L + LyEXeL.

It is easy to check that this formula defines a connection, i.e. V% is tensorial
in X and V¥ (fY) = X(f)Y + fVE(Y). If YV is left-invariant, then ¢y 6%
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is constant and hence Lxty8” = 0, hence V3 (Y) = 0. If X is right-
invariant, then £x6% = 0 and we read off V¥ (Y) = [X,Y]. The two
expressions for the torsion follow directly from the definition T'(X,Y) =
VI Y) — Vi(X) — [X,Y], for the special case that X,Y are both left-
invariant or both right-invariant. To show V"B = 0, we show that

(VX'B)(Y,Z) = XB(Y,Z) - B(VX"Y,Z) - B(Y,VX"Z)

vanishes on left-invariant vector fields. But B(Y, Z) is constant if Y, Z are
left-invariant, while V'Y, V4 Z vanish if X is left-invariant. A curve 7(s)
is a geodesic for V™ if and only if the velocity vector field 4 (a vector field
along the curve 7, i.e. a section of v*(T'G)) satisfies V?/“t"y = 0. Here the left
hand side may be calculated by choosing a vector field X for which v is an
integral curve, and computing Vx X|, ). If v(s) = exp(s€) is a 1-parameter
subgroup, one may take X = &X, and it follows immediately that v is a
geodesic. By the uniqueness theorem, all geodesics starting at e are of this
form. By left-invariance of the metric, the geodesics starting at a € G are
left translates by a of geodesics starting at e. ([

Any connection Vx(Y) can be turned into a torsion-free connection by
subtracting half its torsion, Vx (Y) = Vx(Y) = —3T(X,Y). The geodesics
of V, V coincide. In the case of V" since B(T(X,Y), Z) is skew-symmetric
in X,Y, Z the torsion-free part coincides with the Levi-Civita connection:

VRNY) = VEH(Y) — 3T(X,Y)
Thus
VERY) = 3[X,Y]

if X,Y are left-invariant. More generally, let us introduce a family of left-
invariant connections by putting

Vi (Y) =t[X,Y]

on left-invariant vector fields. Its torsion is T*(X,Y) = (2¢t — 1)[X,Y]. Thus
V0 is the natural connection, and V2 is the Levi-Civita connection. In
terms of left-trivialization of the tangent bundle, we have

th =Lx +tad)~(

Suppose now that V' is a Cl(g)-module. Then £ = G x V is a left-invariant
Cl(TG) = GxCl(T'g)-module (i.e. Clifford action commutes with left trans-
lation). The formula

Ve = Lx +tolvg)

defines a connection on £.

LEMMA 3.2. The connection V&t is a Clifford connection (relative to
the given connection V).
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PROOF. We check, for v € T'(€) (viewed as a function 7 € C*(G,V)),

P

V& oY)y = (Lx + to(vg))e(Y)7

= o(V)VY'Y + o(LxY +t[X,Y])7

—_——
—_—

= o(V)VY'Y + o(VLY)F

The resulting Dirac operator on £ is
P = o(e")(Llea) + to(re,))-

Comparing with the formula D = 3" e%é, + 3 >, €*y(e,) for the algebraic

Dirac operator we see that the latter corresponds to the value t = % In terms

of V™ and V™€ this is the convex linear combination V1/3 = Fvnat 4
%Vmet We have shown:

THEOREM 3.3. Suppose V is a Cl(V')-module. The image of D under the
representation
U(g) ® Cl(g) — DO(G, G x V)

as left-invariant differential operators is the geometric Dirac operator defined
by the left-invariant connection %V”at + %Vmet.

4. Dirac operators over G/K

Let us quickly recall the construction of connections on vector bundles,
associated to principal connections § € Q'(P,€)* on principal K-bundles
P — M. Given such a vector bundle P X iV, there is a natural isomorphism

D(PxgV)=C®PV)E o7
defined by the pull-back of sections. This extends to differential forms with
values in P X V,
UM, Pxg V)= QUP,V)Kk bas, 77

the unique extension as an Q(M) = Q(P)x_pas-module homomorphism.
The linear connection

V:QM,PxgV)—= QT M, P xg V)
corresponding to the principal connection 6 is given by the formula,
Vy=(d+6)7,

where the £-part of § € Q(M, €)X acts by the infinitesimal action on V.
Equivalently,

Vx7 = uhor(X))dF,
where hor(X) € X(P) is the horizontal lift of X € X(M) with respect to 6.
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Consider a homogeneous space G/ K. Its tangent space at the identity is
T.x(G/K) = g/t hence by equivariance T(G/K) = G x g (g/t). The choice
of a G-invariant principal connection on G — G/K is equivalent to the
choice of a K-equivariant splitting of the sequence 0 — ¢ — g — g/t — 0,
i.e. to the choice of a K-invariant complement p C g. Letting pry: g — ¢
denote the projection along p, its connection 1-form is # = pr, 6%, and for
the curvature F = df + $[0,6] one finds (using d¢* + [0%,0%] = 0, and
decomposing into ¢-parts and p-parts)

Ff = —% pry,[pr, GL,prp o).

As above, the connection # induces G-invariant linear connections on all
associated vector bundles G X V. As a special case, we may take V =
g/¢ = p. The resulting connection on T'(G/K) = G x g p is called the natural
connection on T(G/K); it will be denoted V. In the case K = {e}, this is
the connection V"t defined by left-trivialization of the tangent bundle. The
function X defined by a vector field X € X(G/K) = T'(G xx p) is related
to the horizontal lift by X = hor(X)6L.

LEMMA 4.1. The identification X(G/K) = C®(G,p)X, X — X takes
the Lie bracket to

—_—~—

[X,Y] = hor(X)Y — hor(Y)X + pr,[X,Y].
PRroor. This follows from the definition:
[X,Y] = u(hor([X, Y]))6"
= 1([hor(X), hor(Y)])#* + F?(hor(X), hor(Y))

= hor(X)Y — hor(Y)X + [X, Y] + F?(hor(X), hor(Y))
= hor(X)Y — hor(Y)X + pr,[X,Y].
([
LEMMA 4.2. The formula for the connection reads,
V1Y = hor(X)Y
Its torsion is given by T(/X\,/Y) = —pr, [)Z', 17]
Proor. We have
VY — VX — [X, Y] = hor(X)Y — hor(Y)X — [X,Y] = — pr,[X, V]. O

As before, we introduce a family of connections
Vi(Y) = V(YY) - tT(X,Y)

so that t = % corresponds is a torsion-free connection. Suppose now that
g is a quadratic Lie algebra, ¢ a quadratic Lie subalgebra, and p = &',
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The pseudo-Riemannian metric on G descends to a left-invariant pseudo-
Riemannian metric on G/K, and one observes that the connections V' are
all metric connections. In particular, V1/2 is the Levi-Civita connection.
For & € p, let adg: p — p be the skew-adjoint map ¢ = pry[£, (]. Then
Vi (V) = hor(X)Y + tad’ (V).
Let 4*(&) € Cl(p) be the Clifford algebra element corresponding to adg. [...]

If V is a K-equivariant Cl(p)-module, define a connection on &€ = G xg V
by

Vi’tg = hor(X)o + tg(v';()&.
As before, one directly checks that this is a Clifford connection: Observe
that the map p — TG, & — &L gives an isometric isomorphism with the

horizontal spaces. Hence the Dirac operator is @'o = Z;g(ea)vfja, where
the summation is over a basis e, of p, with dual basis e*. That is,

Do =3 o) (L(el) +to(17(ea)))7
Arguing as in the case K = {e} we have:
THEOREM 4.3. The image of D(g,t) under the map
(U(g) ® Cl(p)) - DO(G/K, G xg V)
is the geometric Dirac operator for the connection V = %V”at + %Vmet.

REMARK 4.4. Dirac operators on homogeneous spaces are discussed in
a number of references, such as Ikeda [37]. The geometric Dirac operator
P/3 was first considered by Slebarski [58, 59], who also observed that the
square of this operator is given by a simple formula. The identification of
P/3 with the algebraic Dirac operator was noticed by S. Goette [30], and
proved in detail by I. Agricola [2].
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APPENDIX A

Graded and filtered super spaces

1. Super vector spaces

A super vector space is a vector space E equipped with a Zj-grading,
E = E%@® E'. Elements in E° will be called even, elements of E' are called
odd. We will denote by |v| € {0,1} the parity of homogeneous elements
v € E. (Whenever this notation is used, it is implicitly assumed that v is
homogeneous.) A morphism of super vector spaces ¢: E — F' is a linear
map preserving Zs-gradings. We will denote by Hom(FE, F) the space of all
linear maps £ — F', not necessarily preserving Zo-gradings. It is itself a
super vector space, with

Hom(E, F)? = Hom(E°, F°) & Hom(E', F'),
Hom(E, F)' = Hom(E?, F') @ Hom(E", F°).

The space of morphisms of super vector spaces £ — F' is thus the even
subspace Hom(FE, F')°. Direct sums and tensor products of super vector
spaces are just the usual tensor products of vector spaces, with Zs-gradings

(EaF)Y=E'¢Fr, (EeF)!=E@orFr,
respectively
(E@F)°=(E°® F%) & (E'®@ F1),
(E@F)' = (E°® F') & (E' @ F°).

If E is a super vector space, and n € Z, we denote by E[n| the same vector
space with Zo-grading shifted by n mod 2.

The ‘super sign convention’ decrees that the interchange of any two odd
objects results in a minus sign. We will take the categorical viewpoint,
advocated in [24], that the super-sign convention is build into the choice of
commutativity isomorphism for the tensor product:

T: EQF—F®E, vow~— (—DMvy g,

The category of super vector spaces is then a tensor category, with direct
sums, tensor products and a commutativity isomorphism as defined above.
One may then define super algebras, super Lie algebras, super coalgebras
etc. as the algebra objects, Lie algebra objects, coalgebra objects etc. in
this tensor category. Similarly, various constructions with these objects are
naturally defined in terms of ‘categorical constructions’.
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For example, a super Lie algebra is a super space g together with a
bracket = [-,-]: g ® g — g satisfying the following axioms:

['7 ] o = _['v ]
(skew symmetry) and
(Jacobi identity). On homogeneous elements, the two conditions read

[u7 U] = _(_1)|UHU‘ [Uv u])

[, [0, w]) = ([, o], w] + (=1, [u, w]].
Super algebras are Zo-graded algebras A, such that the multiplication map
myg: A® A — A preserves Zs-gradings. The super sign convention makes
its appearance once we define the tensor product A® B of two such algebras.
By definition the multiplication of the tensor algebra is

MARB = (mA®m3) o (id@T@id),

a composition of maps AQBRXIARB > AQARBRB - A®B. Writing
(ma@mp)((z®y)® (' ®y)) =(r®y)(z’®y') the multiplication map is

(zoy) (@ ey) = (1) 22’ @ yy'.

The sign convention also shows up if one writes out the definition of the
commutator [-,-] =my —my ® T for a super algebra A:

[z, y] = zy — (—1)W¥lyz.

This bracket makes A into a super Lie algebra. The center Cent(.A) of the
super algebra A is the collection of elements x such that [z, A] = 0. The
super algebra A is called commutative if Cent(A) = A, ie. [A, A = 0.
A trace on a super algebra is a morphism tr: A — K that vanishes on
[A, Al C A. An endomorphism D € End(A) is called a derivation of the
super algebra if

D(zy) = (Dx)y + (—1)!PI*lz(Dy)

for all homogeneous elements x,y. The space Der(.A) of such derivations is
a super Lie subalgebra of End(.4). Some basic properties of derivations of
a super algebra are,
(1) Any D € Der(A) vanishes on scalars K C A. This is immediate
from the definition, applied to z =y = 1.
(2) Derivations are determined by their values on algebra generators.
(3) Der(A) is a left module under Cent(.A).
(4) The map x — [z, -] defines a morphism of super Lie algebras A —
Der(.A). Derivations of this type are called inner.
One similarly defines tensor products, the center, and derivations of super
Lie algebras.
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REMARK 1.1. Super algebras can be viewed as ordinary algebras by
forgetting the Zs-grading. To avoid misunderstandings, one sometimes refers
to commutators, the center, traces, and derivations of a super algebra as
super commutators, the super center, super traces, and super derivations.
(In some of the older literature, the terms ‘anti-commutator’ and ‘anti-
derivation’ are also used.)

For any super vector space E, the tensor algebra T'(E) is a super algebra,
characterized by the universal property:

PROPOSITION 1.2. For any super algebra A and morphism of super vec-
tor spaces E — A, there is a unique extension to a morphism of super
algebras T(E) — A.

The symmetric algebra S(FE) is the quotient of the tensor algebra by the
two-sided ideal generated by all v ® w — (—1)'”””“”'11) ® v for homogeneous
elements v, w € E. Its universal property reads,

PROPOSITION 1.3. For any commutative super algebra A and morphism
of super vector spaces E — A, there is a unique extension to a morphism of
super algebras S(E) — A.

2. Graded super vector spaces

A graded vector space is a vector space equipped with a Z-grading F =
DBz E*. The degree of a homogeneous element v is denoted |v| € Z. A
morphism of graded vector spaces is a degree preserving linear map. The
direct sum of two graded vector spaces E, F is graded as (E®F)* = EFQFF,
while the tensor product is graded as

(EeF)=PF eF
1EZ
One can make graded vector spaces into a tensor category in two ways.
Taking the commutativity isomorphism FQF — FQFE to be v@w — w®uv,
one obtains what we will call the category of graded vector spaces. Taking
the isomorphism to be v ® w — (—1)"l*lyy @ v, one obtains what we will
refer to as graded super vector spaces. In the second case, the Zs-grading is
just the mod 2 reduction of the Z-grading.

The algebra objects, Lie algebra objects, and so on in the category of
graded vector spaces will be called graded algebras, graded Lie algebras, and
so on, while those in the category of graded super vector spaces will be called
graded super algebras, graded super Lie algebras, and so on. For instance, a
graded (super) Lie algebra is a graded (super) vector space, which is also a
(super) Lie algebra, and with the property [g°, g/] C g**7.

EXAMPLE 2.1. The exterior algebra A(V) = @, A¥(V) over a vector
space V is an example of a commutative graded super algebra. Under direct
sum, A(VeW) = A(V)RA(W) as graded super algebras (but not as ordinary
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algebras). On the other hand, S(V) is a commutative graded algebra. One
has S(VaW) = S(V)®S(W) as graded algebras (but not as super algebras).

It is often convenient to regard graded spaces as graded super spaces, by
degree doubling. For example, a symmetric algebra S(V) = @, S*(V) over
a vector space V' is commutative graded algebra. It becomes a commutative
graded superalgebra for the doubled grading

S(V)*k = sk(v), S+ (V) = 0.

Given a graded vector space E, and any n € Z, one defines new graded
vector space E[n] by degree shift:

(E[n])k _ EnJrk.

Thus, if v € E has degree k, then its degree in E[n] = E is k —n. For a
graded super vector space, this operation changes the Zs-grading by (—1)".
Note also that F[n] = F ® K[n].

If E, F are graded (super) vector spaces, define Hom*(E, F) as the set
of linear maps ¢: E — F of degree k, i.e. such that ¢(E?) C FK, Equiva-
lently, Hom"(E, F') consists of morphisms of graded vector spaces £ — F[k].
One has

P Hom*(E, F) C Hom(E, F) C | [ Hom"(E, F).
k k
In general, each of the two inclusions can be strict.

EXAMPLE 2.2. Suppose E, F' are graded (super) vector spaces. Then

E* = Hom(E,K) = [ [ Hom*(E,K) = [[(E~)*
k k

while
F = Hom(K, F) = @) Hom"(K, F) = @) F*.
k k

If F = E we write End*(F) = Hom*(E, E). Then @, End*(E) is a
graded Lie algebra under commutator. Similarly, if £ is a graded super
vector space, then @, End”(FE) becomes a graded super Lie algebra.

Suppose A is a graded algebra, and let Der(.A) be the Lie algebra of
derivations. The elements of

Der®(A) = Der(A) N End*(A)

are called derivations of degree k of the graded algebra A. The direct sum
@, Der®(A) becomes a graded Lie subalgebra of @, End*(A). In a similar
way, one defines derivations of degree k of a graded super algebra, by taking
Der(.A) to be the derivations as a super algebra.

If F is a graded super vector space, then the tensor algebra T'(F) and
the symmetric algebra S(E) acquire the structure of graded super algebras,
in such a way that the inclusion map £ — T(F) resp. E — S(E) is a
morphism of graded super vector spaces. These internal gradings are not to
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be confused with the external gradings T(E) = @y-q T*(E) resp. S(E) =
Di~o Sk(E). Sometimes, we also consider the total gradings, given by the
internal grading plus twice the external grading. Then S(E),T(E) are also
graded superalgebra relative to the total grading.

3. Filtered super vector spaces

A filtered vector space is a vector space E together with a sequence of
subspaces E(®), k € Z such that E®) ¢ E*+1) and

NE® =0, | JE® =E.
k k

A morphism of filtered vector spaces is a linear map ¢: E — F taking E®*)
to F®)_ for all k. Direct sums of filtered vector spaces are filtered in the
obvious way, while tensor products are filtered as

(EeF)® =PED e F*,

Filtered vector spaces form a tensor category, hence we can speak of filtered
algebras, filtered Lie algebras and so on by requiring that the relevant struc-
ture maps should be morphisms. A typical example of a filtered algebra
is the enveloping algebra U(g) of a Lie algebra. If E, F are filtered vector
spaces, we define Hom(k)(E, F) to be the space of linear maps E — F rais-
ing filtration degree by k. Note that the union over these spaces is usually
smaller than Hom(FE, F), since a general linear map E — F need not have
any finite filtration degree.

We put End® (E) = Hom® (E, E). If A is a filtered algebra, we define
Der® (A) = Der(A) N End®(A).

Suppose F is a filtered vector space. A linear map F — K has filtration
degree k if and only if it takes EW to 0 for all [ < —k. That is,

(E*)®) = ann(EFD),

If the filtration of E is bounded below in the sense that E() = 0 for some
I, then any element of E* has finite filtration degree, and hence the (E*)®*)
define a filtration of E*.

Suppose FE is a filtered vector space. The associated graded vector space
gr(E) is defined as the direct sum over gr*(E) = E® /E*=1) A morphism
¢ of filtered vector spaces induces a morphism gr(¢) of associated graded
spaces. In this way, gr becomes a functor from the tensor category of filtered
vector spaces to the tensor category of graded vector spaces. The associated
graded object to a filtered algebra is a graded algebra, the associated graded
object to a filtered Lie algebra is a graded Lie algebras, and so on. If E carries
a filtration, which is bounded in the sense that E® = 0 and E(™ = F for
some [, m, then the filtration on E* is bounded, and gr(E*) = gr(E)*.

Any graded vector space E = @, E¥ can be regarded as a filtered vector
space, by putting E®) = @, , E*. In this case, gr(E) = E.
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A filtered super vector space [48] is a super vector space E, equipped
with a filtration E*) by super subspaces, such that

(E(k))ﬁ _ (E(k+1))6, for k even,

(B = (BEHD)L - for & odd.

Equivalently, the Zs-grading on the associated graded space gr(F) is the
mod 2 reduction of the Z-grading, making gr(F) into a graded super vector
space. If F is a filtered super vector space with a bounded filtration, then E*
is again a filtered super vector space. An example of a filtered super space is
the Clifford algebra C1(V; B) of a vector space V' with bilinear form B. The
filtered super vector spaces form a tensor algebra, hence there are notions
of filtered super algebras, filtered super Lie algebras, a space Der(%) (A) of
degree k derivations of a filtered super algebra, and so on.

If E is a filtered super vector space, then the tensor algebra T'(F) and the
symmetric algebra S(F) acquire the structure of filtered super algebras, in
such a way that the inclusion map F — T'(F) resp. E — S(F) is a morphism
of filtered super vector spaces. We will refer to this as the internal filtration.
Sometimes we also consider the total filtration, obtained by adding twice
the external filtration degree. The total filtration is such that the map
E[—2] — T(FE) resp. resp. E[—2] — S(E) are filtration preserving.
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APPENDIX B

Reductive Lie algebras

Throughout this section, K denotes a field of characteristic zero, and
all Lie algebra are taken finite-dimensional. We soon specialize to the case
K = C. Standard references for the material below are Bourbaki [12, 13, 14|
and Humphreys [36].

1. Definitions and basic properties

A Lie algebra g over K is called simple if it non-abelian and has no ideals
other than {0} and g. A Lie algebra is called semi-simple if it is a direct
sum of simple Lie algebras. A Lie algebra is reductive if it is the direct
sum of a semi-simple and an abelian Lie algebra. These conditions can be
expressed in a number of equivalent ways. Most importantly, a Lie algebra
is semi-simple if and only if the Killing form

Bxi(§,¢) = trg(ade ad)

is non-degenerate. Cf. [12, 1.§6.1]. Hence, reductive Lie algebras are in
particular quadratic Lie algebras (one may take the Killing form on the
semi-simple part [g, g] and an arbitrary non-degenerate symmetric bilinear
form on the center). The existence of a finite-dimensional representation
m: g — End(V) such that the bilinear form By (£,¢) = try(n(§)7(C)) is
non-degenerate is one characterization of reductive Lie algebras. Cf. [12,
1.56.4].

EXAMPLES 1.1. (1) The 3-dimensional Lie algebra g with basis e, f, h
and bracket relations
(116) {6, f] = ha [ha 6] = 267 [ha f] = _2f

is semi-simple. It is isomorphic to the Lie algebra sl(2, K) of trace-
free 2 x 2-matrices under the identification

=(33) 2o 5)-r=(50)

(2) The Lie algebra gl(n, K) = Mat,,(K) of n x n-matrices is reductive,
and its subalgebra sl(n,K) of trace-free matrices is semi-simple.

(3) For K = R or K = C, the Lie algebra so(n,K) is semi-simple for
n > 3.

(4) The Lie algebra g of any compact real Lie group G is reductive. It
is semi-simple if and only if the center of G is finite.
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According to Weyl’s Theorem, any finite-dimensional representation V'
of a semi-simple Lie algebra is a direct sum V' = €, V; of irreducible ones.
(Cf. [12, 1.§6.1].) This property of complete reducibility does not hold for
reductive Lie algebras, in general. (Take e.g. g = K, acting on V = K2 as
strictly upper triangular 2 x 2-matrices.)

A Lie algebra g over K = R is called compact if it admits an invariant
symmetric bilinear form that is positive definite. g is compact if and only if
there is a compact Lie group G having g as its Lie algebra. Cf. [14, IX.§1.3].

Suppose g is a Lie algebra over K = C. A Lie algebra gg is called a real
form of g if g = gr ® C. A complex Lie algebra g is reductive if and only if
it admits a compact real form ggr. Cf. [14, IX.§3.3]. Any two real forms of
a complex reductive Lie algebra g are related by an automorphism of g.

2. Cartan subalgebras

A Lie algebra g is nilpotent if the series of ideals

g, [9.9], [9.[9.9]], [g.]g. [0 0l]], ...

is eventually zero. A Cartan subalgebra b of a Lie algebra g is a nilpotent
subalgebra that is equal to its own normalizer, i.e. ad¢(h) C b= £ € b.

EXAMPLES 2.1. (1) Let g = gl(n,K). Then the subalgebra b of
diagonal matrices is a Cartan subalgebra.

(2) For any ¢ € g, let g°(€) be the generalized eigenspace of ad¢ for the
eigenvalue 0. (Le. ¢ € g°(¢) if and only if adg¢ ¢ = 0 for n sufficiently
large.) An element & € g is called regular if and only if dim g°(¢)
takes on its smallest possible value. The latter is called the rank of
g. If € is regular, then g¢ is a Cartan subalgebra. Cf. [14, VIL.§2.3].
Thus, the rank of g is the dimension of a Cartan subalgebra.

(3) As a special case, consider g = sl(2,K) with its standard basis
e, f,h. Then g has rank 1. The element h is regular, hence it spans
a Cartan subalgebra. The sum e+ f is another example of a regular
element.

(4) If g is complex reductive, and tg C gr is a maximal Abelian sub-
algebra of a compact real form of g, then t = tg ® C is a Cartan
subalgebra of g.

Cartan subalgebras of semi-simple Lie algebras are always commutative,
and consist of semi-simple elements. Cf. [14, VIL.§2.4]. If g is semi-simple
and K = C, any two Cartan subalgebras are conjugate in g. The same holds
for compact Lie algebras over K = R. In this case, the Cartan subalgebras
are exactly the maximal Abelian subalgebras. (This is not true in general:
E.g. for g = sl(2,K), the span of f is maximal abelian but is not a Cartan
subalgebra.)
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3. Representation theory of sl((2,C).

We need some facts from the representation theory of the Lie algebra
5[(2,C). Let e, f, h be the standard basis as above.

THEOREM 3.1. Up to isomorphism, there is a unique k + 1-dimensional
irreducible representation V (k) of s(2,C), for any k > 0. It admits a basis
V0, - - ., Vg Such that for all j =0,...,k,

m(flvi =+ Dvjra, w(h)v; = (k= 2j)vj, w(e)v; = (k—j+1)vj
with the convention vy =0, v_1 = 0.

PRrROOF. It is straightforward to verify that these formulas define a rep-
resentation of s[(2,C). Since m(e)¥*! = 0, the operator 7(e) has a non-zero
kernel on every invariant subspace of V' (k). But ker(m(e)) is spanned by vy.
It follows that every invariant subspace contains vy, and hence also contains
the vectors v; = %w( f)7vo. This shows that V (k) is irreducible.

Suppose conversely that 7: sl[(2,C) — End(V) is any finite-dimensional
irreducible representation. Let v € V' be an eigenvector of 7(h), with eigen-
value s. If w(e)v # 0, then m(e)v is an eigenvector of w(h) with eigenvalue
s + 2, by the calculation

w(h)m(e)v = w([h,e])v — w(e)m(h)v = (s + 2)7(e)v.

Since dim V' < oo, the sequence of vectors v, m(e)v, m(e)?v,... is eventually

zero. Take vy to be the last non-zero element in this sequence. Then 7(e)v =
0, w(h)v = sgv for some sy € C. Define

1 ; .
’Uj = ﬁﬂ'(f)]’l)o, ¥i :0,1,....
Arguing as above, v; is an eigenvector of m(h) with eigenvalue so — 27,
provided that it is non-zero. Hence, the sequence of v;’s is eventually 0,
and the non-zero v; are linearly independent. Let £ > 0 be defined by

vk # 0, vgr1 = 0. By construction, the span of vy, ..., v, is invariant under
7(f) and under 7(h). Using
1 1
m{eor = (@R = — () + ()

and induction on j one proves that 7(e)vj1 = (so — j)vj. Taking j = k this
identity shows sy = k. Hence, vp,...,v; span a copy of V (k). Since V is
irreducible, this span coincides with all of V. (|

REMARK 3.2. The representation V (k) of dimension k + 1 admits a con-

crete realization as the k-th symmetric power of the defining representation
of s1(2,C) on C2.

We will often use the following simple consequence of these formulas:
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COROLLARY 3.3. Letm: sl(2,C) — End(V) be a finite-dimensional s1(2, C)-
representation. The the operator w(h) on V' is diagonalizable, and its eigen-
values are integers. Moreover, letting V, = ker(mw(h) —r), we have:

r>0=7n(f):V, = V,_a is injective
r<0=m(e): V; = Viyo is injective.

PROOF. The statements hold true for all irreducible components, hence
also for their direct sum. O

4. Roots

Assume for the remainder of this Appendix that K = C. Let g be a
reductive Lie algebra over C, with a given compact real form gr, and let t C g
be a Cartan subalgebra obtained by complexification of a maximal Abelian
subalgebra tg C gr. The choice of gr determines a complex conjugation
map *: g — g, with gr as its fixed point set. We will also fix an invariant
positive definite symmetric bilinear form B on ggr, and use the same notation
for its complexification to a bilinear form on g. The resulting bilinear form
on g* will be denoted by B*.

For any « € t*, define the subspace

go ={Ccglfct=ade(=(a,§)C }.

Then g is a direct sum over the non-zero subspaces g,. Elementary proper-
ties of these subspaces are

[gaagﬁ] C Ga+8;
g6 = 0-a
go=1t

Furthermore, B(ga, g3) = 0 for o +  # 0, while go, g—o are non-singularly
paired for all a # 0.

A non-zero element o € t* is called a root of g if g, # 0; the corre-
sponding subspace g, is called a root space. The set of roots is denoted fR.

Thus
g=tod @ Ja-
acRr

EXAMPLE 4.1. Let g = sl(2,C) with its standard basis e, f, h, and with
t = span(h). Then a(h) = £2 (resp. a(h) = —2) defines a root, with
corresponding root space g, = span(e) (resp. span(f)).

PROPOSITION 4.2. For all « € R, the space g, 9—a) is 1-dimensional,
and is spanned by Bﬁ(a). More precisely, if e € go and f € g_q, then

[e. /1= Ble, f) B(a).
PROOF. For e € g4, [ € g_o and h € t we have

B(ad(e)f,h) = —B(f,ad(e)h) = B(e, f){a, h).
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DEFINITION 4.3. For any root a € fR, the co-root o € t is the unique
element of [gq,g_o] such that (o, a") = 2. The set of co-roots is denoted
RY.

In terms of the bilinear form, one has

Vo _ Bﬁ(a)
B*(a, )’

PROPOSITION 4.4. Let e, € go with normalization B(eq,€l,) = W,

and put fo = €5, hoa = . Then eq, fo,ha are the standard basis for an

s[(2, C)-subalgebra sl C g.

PROOF. We have [ha,en] = (a,ha)eq = 2e, and similarly [hq, fo] =
—2f4. Furthermore,

[eou foz] = B(ea,fQ)Bﬁ(a) =a' = he.
O

The representation theory of the sl(2,C) subalgebras sl, implies the
basic properties of root systems.

PROPOSITION 4.5. Let o € R be a root. Then:
(1) dim(ga) = 1.
(2) If B € R is a multiple of «, then f = *a.
(3) Let B € R, with 8 # ta. Then

(B,aY) <0=a+pBeR

(4) (Root strings.) Given [ € R, with B # La, there exist integers
q,p > 0 such that for any integer r, 8 + ra € R if and only if
—q <r <p. These integers satisfy

g—p=(8,a").
The direct sum EBp:_q 98+ra @5 an irreducible sl,-representation of

dimension p + q + 1.
(5) If a, B, e+ 8 are all roots, then [ga, 98] = Gats-

Proor. We will regard g as an sly-representation, by restricting the
adjoint representation of g. That is, the standard basis elements act as
ad(ha)v ad(ea)’ ad(fa)'

(1) Since ad(hy) acts on g_, as a non-zero scalar —2, Corollary 3.3 shows
that the map ad(e,): g—o — go is injective. On the other hand, Proposition
4.2 shows that its range is 1-dimensional. Hence dim g, = dimg_, = 1.

(2) We may assume that to is not a root for |t| < 1. We will show that it
is not a root for |t| > 1. Suppose on the contrary that t« is a root for some
t > 1, and take the smallest such ¢. The operator ad(h,) acts on g as a
positive scalar 2t > 0. By Corollary 3.3, it follows that ad(fa): gta = 8(t—1)a
is injective. Since t > 1, and since there are no smaller multiples of « that
are roots, other than « itself, this implies that ¢t = 2, and ad(fs): 924 — 9a
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is injective. But this is impossible, since g = sl, ® 5% is an sly-invariant
decomposition with g, C sl,, g2a C slj

(3) Suppose a, 3 are distinct roots with (8, ") < 0. Since ad(h,) acts on
gp as a negative scalar (8, a") < 0, Corollary 3.3 shows that ad(en): gg —
ga+p 1s injective. Since ao + B # 0 it is thus an isomorphism. In particular,
ga+g 1s non-zero.

(4) If ggyra # 0 then ad(ha) acts on it as a scalar (3, a") 4+ 2r. Let ¢,p
be the largest integers such that ggipn 7 0, respectively gg_qo # 0. Then
9p+pa C ker(ad(eq)). Consequently,

V= @ adj(fa)gﬁ-i-pa

Jj=0

is an irreducible sl,-representation V' C g. Its dimension is k + 1 where k =
(B, ") +2p is the eigenvalue of ad(hq) on gg4pa- In particular, all subspaces
9p+ra for —k < (B,a") 4+ 2r < k are non-zero. By a similar argument,
we see that gg_qo and its images under ad’(eq), j = 0,1,2,... span an
irreducible representation V' of dimension k' + 1, where ¥’ = 2q — (3,a").
Since all root spaces ggiro With (8,a¥) + 2r > 0 are contained in V, we
must have V =V’ k= k. In particular, (8,a") +2p = 2¢ — (3,a"), hence
q—p=(B,a")and k = q+p.

(5) follows from (4), since ad(eq): g3 — gp+a IS an isomorphism if
93, UB+a are NON-zero. ([

DEFINITION 4.6 (Lattices). (1) The lattice
Q = spany R C -1ty
spanned by the roots is called the root lattice.
(2) The lattice
Q" = spany; MY C V—1tg
spanned by the co-roots is called the co-root lattice.

(3) The lattice
P={pev-1t| £ € Q" = (u,€) € 7}

dual to the co-root lattice is called the weight lattice. Similarly,
PY = @Q* C tis called the co-weight lattice.

Part (4) of Proposition 4.5 shows in particular that (o, 8Y) € Z for all
a, € Ri. Hence

QCP,
and dually QY C PY. We will find it convenient to work with the bilinear
form (-|-) = —B on g, given by (£1|&2) = —B(&1,&2), so that (-, -) is positive

definite on /—1tg. The same notation (-|-) will be used for the dual bilinear
form on g*.
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5. Simple roots

Fix & € t with (o, ) € R\{0} for all & € R. The choice of £y determines
a decomposition
9% - er @] ER,
into positive roots and negative roots, where Ry (resp. PR_) consists of all
roots such that (a, &) > 0 (resp. < 0). Note a« € R_ & —a € R4, and that
the sum of two positive roots (resp. of two negative roots) is again positive
(resp. negative).

DEFINITION 5.1. A positive root is called simple if it cannot be written
as a sum of two positive roots.

PROPOSITION 5.2 (Simple roots). The set of simple roots has the follow-
ing properties.

(1) The simple roots a1, ... form a basis of the root lattice.

(2) A root o € R is positive if and only if all coefficients in the ex-
pansion o = Y . kjoy are > 0. It is negative if and only if all
coefficients are < 0.

(3) One has {aj, ) <0 fori+#3j.

Proor. If oy, a; are distinct simple roots, then their difference o; — o5
is not a root. (Otherwise, either a; = o + (o — 5) or oj = o + (aj — ;)
would be a sum of two positive roots.) It follows that distinct simple roots
satisfy (ay, af) <0, proving (3).

We next show that the «; are linearly independent. Indeed suppose

Zi k:ia,- = 0. Let
n = Z kiOéi = — Z ijéj.
ki>0 kj<0
Taking the scalar product with itself, and using B(a;, o) < 0 for i # j we
obtain
0< (ulp)=— Y kikj(ailay) <0.
k; >0, kj <0
Hence p = 0, which shows that all k; = 0, proving (1).

We claim that any o € R4 can be written in the form o = > ko
for some k; € Z>g. Otherwise, let a be a counterexample with (a,&p) as
small as possible. Since « is not a simple root, it can be written as a sum
a = o 4+ " of two positive roots o', a”. Then (a/, &), (@”, &) are both
strictly smaller than (a,&y). Hence, neither is a counterexample, and each
can be written as a linear combination of «;’s with non-negative coefficients.
Hence the same is true of a. This proves (2). O

6. The Weyl group
Associated to any root « is a reflection w, € GL(t) given by

wa(€) =€ — (@, &)a”.
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Dually, one has a reflection w, € GL(t*) given by

wa(p) = p— (p, a”)a.
Thus (wa (i), wa(§)) = (u,&) for all p € t*, £ € t. The reflection w, €
GL(t) admits an extension to a Lie algebra automorphism g, as follows. Let
€a, ha, fo be the basis for , as defined in Proposition 4.4.

PROPOSITION 6.1. The transformation

0o = exp(ad(ea)) exp(—ad(fa)) exp(ad(eq)) € GL(g)

is well-defined Lie algebra automorphism of g. It has the property 04|y = wa,
and restricts to isomorphisms g3 = g, () for all roots 3.

PROOF. Since ad(eq),ad(f,) are nilpotent Lie algebra derivations of g,
the exponentials are well-defined Lie algebra automorphisms of g. If h €
ker(a) C t, then ad(eq)h = 0 = ad(fq)h, hence 6,(h) = h. On the other
hand, if h = h, we may replace g with the sl,, and hence assume g = sl(2, C),
with e, = e, fo = f, ha = h given by matrices as in Example 1.1. Then
0, = 0 is the transformation

0 = Ad(exp(e) exp(—f) exp(e))
using exponentials of matrices. We compute

exp(e)eXp(—f)eXp(e)=((1) }) (_11 ‘f) (é })=(f’1 }));

1 0
0 —1
For the second part, let v € gg, and calculate

ad(h)0 (v) = o (ad(wy h)v) = (8, w5 h)8a(v) = (wa(B), h)8a(v).

conjugation of h = ) by this matrix gives —h.

O

COROLLARY 6.2. The transformations ws of t*,t preserve the sets R, R,
respectively. Hence they also preserve the lattices Q C P and QY C PV, re-
spectively.

PROOF. By the Proposition, if gg is non-zero then so is g,,,(3). Hence
w,, preserves the set of roots. Using the formula Y = 2(53]-)/(8|8) for the
co-roots, we see that wy, is just the orthogonal reflection defined by (-|-), and
that wa(8Y) = (waf)Y. In particular, RY is wy-invariant as well. O

DEFINITION 6.3. The subgroup W C GL(t) generated by the reflections

Wq, @ € R is called the Weyl group of the pair (g,t) (or of the root system
R Cth).

We have wqawgw, = wg where ' = wq(3). Hence, any w € W can be
written as a product of at most |94 | reflections w,. In particular, |W| < co.

PROPOSITION 6.4. The reflection w; = w,, defined by a simple root o
permutes the set Ry \{«;}.
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PROOF. Suppose @ € Ry\{a;}. Write a = 3, kja; € Ry, so that all
k; > 0. The root

(117) wia = a — (o, ) Yoy = Z ki,
J

has coefficients /@; = k; for j # 4. Since « is not a multiple of «; it follows
that k; = k; > 0 for some j # 4. This shows that w;«a is positive. O

For element o = ), k;«; of the root lattice, one defines its height as
ht(a) = ki
i

The formula (117) for w;a shows that if (a, o) > 0 = ht(w;a) < ht(a).

PROPOSITION 6.5. Any Weyl group element w can be written as a prod-
uct of simple reflections

(118) W= w0

r

Proor. It suffices to show that every w,, o € %Ry can be written in
this form. The proof uses induction on k& = ht(a). Since 0 < (a|a) =
> ki(a]ay), there is at least one ¢ with (a]ay) > 0. As remarked above, this
implies ht(w;a) < ht(c). We have

Wao = Wi Wy Wy
with o/ = w;a; by induction w,/ is a product of simple reflections. O

DEFINITION 6.6. The length [(w) of a Weyl group element w € W is the
smallest number 7 such that w can be written in the form (118). If r = I(w)
the expression (118) is called reduced.

It is immediate that
Hw™) =1(w), N ww') <Il(w)+1(w).

PROPOSITION 6.7. For any Weyl group element w, and any simple root
a;, we have l(ww;) = l(w) + 1 if woy is positive, and l(ww;) = l(w) — 1 if
wa; 15 negative.

PROOF. Write w = wj, - --w;, with r = l(w). Suppose wa; is negative.
Then there is m < r such that

Bri=w;, - wi,a € Ry, w;, - wia € R
That is, w;,, changes the positive root 8 to a negative root. The only
positive root with this property is 8 = «;,,. With v = w;,, ---w;. € W we
have a;, = ua;, thus w;, = uw;u~'. Multiplying from the right by u, and
from the left by w;, ---w;,, ,, we obtain
wil cee wimflwimﬂ e wir = Ww;.

This shows [(ww;) = [(w) — 1. The case that wa; is positive is reduced to
the previous case, since w’c; with w’ = ww; is negative. O
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For any w € W, let R, be the set of positive roots that are made
negative under w~'. That is,

(119) Ry =R NwR_.
By Proposition 6.4, Ry, = {a;}.
PROPOSITION 6.8. If w = w;, ---wj;,, 7 =1l(w) is a reduced expression,
(120) Riw={ai, wicu,, -, wi w0}
In particular,
(121) (W) = 1% ]

ProOF. Consider w’ = ww;. Suppose a positive root « is made negative

under (w')~! = w;w~!. Since w; changes the sign of +«;, and preserves

both B/, \{a;} and |_\{—a;}, we see that If w™'a is negative if and only
if wa # —a;. That is,

- B Ry U{wa;}, if way € Ry
s Ry w\{—wa;}, if wa; € R_.

(120) now follows by induction on I(w), using that for a reduced expression
w = w;, - w;,, all w;, ---w;,_ ay, are positive. O

Let us now introduce the half-sum of positive roots

pi=3 Z o € L spang(Ry).
aERL
LEMMA 6.9. For allw e W,
p—wp = Z a.
aCNRL W

Proor. By definition R , = Ry NwAR_, with complement in R given
as R, , = Ry NwRy. Hence wRy =R, U (N ), which gives

wp:% Z a—% Z a=p— Z o.

a€R! , a€R4 w a€R4 w

7. Weyl chambers
Let t,eg C tr be the set of regular elements in tg, i.e. those elements for
which ker(ad¢) = t. It is the complement of the union of root hyperplanes

Ha:{getR| <Oé,§>:()}, aeR

1
2w/ —1
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The components of t.o; are called the open Weyl chambers. We will refer to
the closures of the open chambers as the closed Weyl chambers, or simply
Weyl chambers. We let

ty = {£ € tg (,§) >0 Ya e Ry}

1
2w/ —1
be the positive Weyl chamber. The action of the Weyl group permutes the
chambers.

We say that a root hyperplane H, separates the chambers C,C" if for

points x, 2’ in the interior of the chambers, 2w\1/j1<a’$> and 27“1@ (o, ")

have opposite signs, but ﬁ(ﬁ,x) and ﬁ(ﬂ,m’ ) have equal sign for
all roots 8 # £a.

ProproSITION 7.1. The Weyl group W acts simply transitively on the
set of Weyl chambers. That is, every Weyl chamber is of the form wty for
a unique w € W.

PRrROOF. Since the Weyl group action preserves the set of roots, it also
preserves the union of hyperplanes H,. Hence W acts by a permutation on
the set of Weyl chambers. Any two adjacent Weyl chambers are separated by
some root hyperplane H,, and the reflection w, interchanges the two Weyl
chambers. By a simple induction, one hence finds that any Weyl chamber is
taken to ty by a finite number of Weyl reflections. An element w € W fixes
t; only if it preserves the set R4 of positive roots, if and only if R, ,, = 0.
But this means [(w) = 0, i.e. w = id. O

The length of a Weyl group element has the following interpretation in
terms of the Weyl chambers.

PROPOSITION 7.2. The length l(w) is the number of root hyperplanes
crossed by a line segment from the interior of t4 to a point in the interior
of wty.

PROOF. Let z € int(t} ), o’ € int(wty). The line segment
= (1—t)z+ta!, t €[0,1]
meets the hyperplane H,, o € R, if and only if
1 , 1 1
a,r) <0& w
2my/—1 < ) 2my/—1 <

Hence the number of hyperplanes crossed equals |R4 | = l(w). O

awlr)y<0eswlacR. e acRy,.

8. Weights of representations

Let g be a complex reductive Lie algebra, with Cartan subalgebra t.
Let m: g — End(V') be a representation on a (possibly infinite-dimensional)
complex vector space V. An element p € t* will be called a weight of V if
the space

V,u = {U € V| W(ﬁ)v = </J’v€>v7 5 € t}
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is non-zero. In this case, V), is called the weight space. The set of weights
will be denoted P(V'). We observe that for all roots a € R,

m(ea): Vi = Vida, 7(fa): Vi = Vi_a.
Indeed, if v € V,, and h € t we have,
m(h)m(eq)v = m(eq)m(h)v + w([h, eq])v = (u, h)m(eq)v + (o, hym(eq)v
proving that m(eq)v € Vjqq.

EXAMPLES 8.1. (1) The weights of the adjoint representation of g
are
P(g) =R U{0}.

(2) The set of weights of the representation of g by left multiplication
on U(g) is empty. Indeed, suppose x € U(g) is an element of
filtration degree r, such that hx = (u, h)z for all h € t. Then the
image y € S"(g) of z satisfies hy = 0 for all h € t, hence y = 0. It
follows that = has filtration degree r — 1. Proceeding by induction
we find z = 0.

The second example illustrates that if dim V' = oo, the direct sum of
weight spaces may be strictly smaller than V. Furthermore, the example of
Verma modules discussed below shows that P(V') need not be a subset of P
in that case.

PROPOSITION 8.2. Let V be a finite-dimensional representation of the
complex semi-simple Lie algebra g. The set P(V') of weights is contained
in the weight lattice P, and is invariant under the action of the Weyl group
W. Furthermore,

V= Vi
peP(V)

PRrROOF. Since V is finite-dimensional, Weyl’s theorem shows that it is
completely reducible as a g-representation, and also as a sl,-representation.
That is, it breaks up as a direct sum of irreducible sl,-representations, for
any given a. In particular, the transformations m(hy), o € R are all di-
agonalizable. Since these transformations commute, they are in fact simul-
tanously diagonalizable. Since the h, span t, it follows that V is a direct
sum of the weight spaces. Suppose p is a weight, and let v € V,, be non-zero.
Then v is in particular an eigenvector of m(h,), with eigenvalue (i, a"). By
the representation theory of sl,, the eigenvalues of m(hy) are integers. This
shows y € P. For the W-invariance, consider the automorphism

(122) O, = exp(r(eq)) exp(—7(fa)) exp(m(eq)) € GL(V).

(Here the finite-dimensionality of V' is used to define the exponential of an
endomorphism of V.) Using the same argument as in the proof of Proposi-
tion 6.1, we see that O, implements we:

Oam(R)O, = w(wah), h et
226



CHAPTER B. REDUCTIVE LIE ALGEBRAS

Hence ©, takes V), to V,,, (,). Since this is true for all a € R, p € P(V),
this shows the W-invariance of P(V). O

Since P(V') is W-invariant, it is uniquely determined by its intersection
with the set

Pi ={p€ Pl (u,a") € Lz Ya € Ry}

of dominant weights.

9. Highest weight representations

Let n (resp. n_) be the nilpotent Lie subalgebra of g defined as the
direct sum of root spaces g, for @ € Ry (resp. —a € Ry). Let b=tdn
and b_ = n_ &t be the Borel subalgebras.

DEFINITION 9.1. Let V be any g-representation. A non-zero vector
v € V is called a highest weight vector, of highest weight u € t*, if

veV, mnv=0.

The representation V' is called a highest weight representation if there is a
highest weight vector v with V' = w(Ug)v.

The highest weight vectors span the subspace
Vt={veV|r(n)v=0}
Note that V" is invariant under U(t), and that it is annihilated by all of
U(g)n. Using the direct sum decomposition U(g) = U(n_) @ U(g)b, it
follows that
V=Un_)V"
An important example of a highest weight representation is given as follows.

Given p € t*, define a representation of b on C by letting £ € t act as a
scalar (u, &) and letting n act as zero. Let

L(p) = U(g) ®ue) C

be the induced g-representation (where the g-action comes from the left
regular representation on U(g)). The image v € L(u) of 1 € U(g) is a
highest weight vector, of weight p. One calls L(u) the Verma module. Tt is
the universal highest weight module, in the following sense.

PROPOSITION 9.2. Let V' be a highest weight representation, of highest
weight p € t*. Then there ezists a surjective g-module morphism L(u) — V.

PRrROOF. Let v € V be a highest weight vector. The map C — V, A — v
is U(b)-equivariant, since w(n)v = 0, w(§{)v = (u,&)v, & € t. Hence, the
surjective g-map U(g) — V = — 7(x)v descends to a surjective g-map
L(p) — V. O

Denote by conez Ry all sums ), ko with integers k; > 0.
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PROPOSITION 9.3. The Verma module V(u) is a direct sum of its weight
spaces. We have
P(V (1)) = p — conez Ry;
the multiplicity of the weight  — v (for v € conez R, ) is equal to the car-
dinality of the set of maps Ry — Z>g, o+ ko such that v =3 koa. In
particular, L(), is 1-dimensional.

ProOOF. Choose an ordering of the set $i,. By the Poincaré-Birkhoff-
Witt theorem, U(n_) has a basis consisting of ordered products [ | aER, fha,

Hence L(p) has a basis
Ulka} = H 7T(fa)kav

aERy

where v is the highest weight vector. Since 7(f,) shifts weights by —a, the
basis vectors are weight vectors, of weight

O

COROLLARY 9.4. Let V' be a highest weight module for p € t*. Then
P(V) C p — conez Ry, and weights have finite multiplicity. The weight p
has multiplicity 1. If V' is irreducible, then V" =V,,.

PRrROOF. The first part follows since any highest weight module is a quo-
tient of the Verma module by some submodule. Suppose V is irreducible,
and suppose ' is another highest weight. Then P(V) C /' —conez R,. Since
u itself lies in p — conez R, this is impossible unless 1/ = p. Equivalently,
V), contains all highest weight vectors. O

The sum of two proper submodules of L(u) is again a proper submod-
ule. (Any submodule is a sum of weight spaces; the submodule is proper if
and only if p does not appear as a weight.) Taking the sum of all proper
submodules, we obtain a maximal proper submodule L'(1). The quotient
module

V(p) = L(p)/L' (1)
is then irreducible. (The preimage of a proper submodule W C V(u) is a
proper submodule in L(u), hence contained in L'(x). Thus W = 0.)

PRrROPOSITION 9.5. Let V' be an irreducible g-representation of highest
weight p € t*. Then V is isomorphic to V(u); the isomorphism is unique
up to a non-zero scalar.

ProOF. We will show that if V, V'’ are two irreducible modules of highest
weight p € t*, then V = V', (Uniquencess of the isomorphism follows since
Vy., V), are 1-dimensional.) Let v € V, ' € V' be highest weight vectors.
Let S C V @ V' be the subrepresentation generated by s = v & v/, that is,
S = U(n_)s. Since n annihilates s, while h € t acts as a scalar (u, h), the
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representation S is again a highest weight module for p. The projection
p: S — V is g-equivariant, and hence is surjective:

p(S) =p(U(g)s) = Ulg)p(s) = Ulg)v = V.

We claim that p is also injective. Suppose not, so that ker(p) = SN(0@V’) C
S is a non-trivial subrepresentation. The restriction of p’: S — V' to ker(p)
is clearly injective. Since V’ is irreducible, this restriction is also surjective,
hence ker(p) = V' is a highest weight module of highest weight u. But
S,, is spanned by s ¢ ker(p), hence ker(p), = 0. This contradiction shows
that ker(p) = 0, hence p is an isomorphism. Likewise p’: S — V' is an
isomorphism, proving V = V. U

PROPOSITION 9.6. Let V' be an irreducible highest weight representation,
of highest weight p € t*. Then

dimV <oco & pe Py

PROOF. Suppose i € Py, and let v € V), be non-zero. Given a € Ry, we
have 7(eq)v = 0, 7(ha)v = (p,@")v. Then v; = %W(fa)jv, j=0,1,2,...
span an irreducible sl,-representation W C V. It is finite-dimensional
since (u, ") € Z>qp. The subspace m(g)W is again a finite-dimensional
sl,-invariant subspace. Indeed, for all £ € sl,

m()m(g)W C w(g)W + m(g)m(§)W C w(g)W.

By induction, we hence see that (U ("))g)v = 7(U") g)W is a finite-dimensional
sly-invariant subspace. This shows that all vectors w € V are contained in
some finite-dimensional sl,-subrepresentation, and hence that the operators
m(eq), T(fa) are locally nilpotent. (That is, for all w € V' there exists N > 0
such that m(eq)Nw = 0 and 7(f,)Yw = 0.) As a consequence, the transfor-
mation O, defined in (122) is a well-defined automorphism of V', with

O4 0 m(h) 0 O, = m(wyh)

for all h € t. It follows that P(V') is w,-invariant. Since o was arbitrary,
this proves that P(V') is W-invariant. But P(V') C u—cone R has compact
intersection with P;. We conclude that P(V') is finite. Since the weights
have finite multiplicity, it then follows that dim V' < oo. O

In summary, we have proved the following result:

THEOREM 9.7 (Finite-dimensional irreducible g-representations). Let g
be a complex semi-simple Lie algebra. Then the irreducible g-representations
are classified by the set P, of dominant weights. More precisely, any such
representation is isomorphic to V(u), for a unique p € Py.

DEFINITION 9.8. Let V be a finite-dimensional g-representation, and
p € Py. The p-isotypical subspace V) is the direct sum of the irreducible
components of highest weight p.
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Thus
V=D Vi
HEPy
V) 1s equivalently characterized as the image of the map

Homg(V (1), V) V(u) = V.
or as
Vi =m(Un_ )V}
The multiplicity of the representation V'(u) equals
dim Homg(V (1), V) = dim V.

In particular, the number of all irreducible components of V' is dim V".

10. Extremal weights

LEMMA 10.1. Suppose V is an irreducible g-representation of highest
weight € Py. Then ||v+ pl| <||p+ pl| for all v € P(V), with equality if
and only if v = p.

PROOF. Choose w € W such that w=!(v+p) € Py. Sincew™tv € P(V),
the difference ;1 —w~1v lies in the root cone conez R. Similarly p—w=!p €
coney R4 lies in the positive root cone. Hence, both have non-negative inner
product with w™!(v + p). Writing

ptp=(p—w'v)+(p—wlp)+w (v +p)
it follows that ||u + p||*> > |lw™(v + p)||*> = ||v + p||>. Suppose equality
holds. Then
(n=w™'v) + (p—w™'p) = 0.
Since both summands are in the positive root cone, each of them has to
vanish, giving v = wp and p = wp. Since the W-stabilizer of p is trivial,
this implies w =1 and pu = v. O

ProposITION 10.2 (Extremal weights). Let V' be a finite-dimensional
unitary g-representation, and p € P(V') with the property
v+ pll < s+ pll

for all v € P(V). Then u is a dominant weight, and the irreducible g-
representation of highest weight p appears in V', with multiplicity equal to
the dimension of the t-weight space dimV,.

PROOF. Decompose V into irreducible components. By the Lemma, if
w € P(Vq) for some irreducible component Vi, then it must be the high-
est weight of Vi, with dim((V1),) = 1. Hence, the multiplicity of the pu-
representation is equal to dim V,. O
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APPENDIX C

Background on Lie groups

In this appendix we review some basic material on Lie groups. Standard
references include [15] and [26].

1. Preliminaries

A (real) Lie group is a group G, equipped with a (real) manifold struc-
ture such that the group operations of multiplication and inversion are
smooth. For example, GL(N,R), with manifold structure as an open subset
of Maty(R), is a obviously Lie group. According to theorem of E. Cartan,
any (topologically) closed subgroup H of a Lie group G is a Lie subgroup:
the smoothness is automatic. Hence, it is immediate that e.g. that SO(n),
GL(N,C), U(n) etc. are again Lie groups. A related result is that if G, G
are Lie groups, then any continuous group homomorphism G; — Go is
smooth. Consequently, a given topological group cannot carry more than
one smooth structure making it into a Lie group.

For a € G, let AL(a) be the diffeomorphism of G given by left multi-
plication, g — ag. A vector field X € X(G) is called left-invariant if it is
invariant under all A”(a), a € G. Equivalently, a vector field is left-invariant
if and only if its action on functions commutes with pull-back under A*(a),
for all a. It is immediate that the Lie bracket of two left-invariant vector
fields is again left-invariant. Let X*(G) C X(G) denote the Lie algebra
of left-invariant vector fields. Any element of X(G) is determined by its

value at the group unit e € G. This gives a vector space isomorphism
T.G — X1(@), € &F. One calls

g="T.G = xHQ),

with Lie bracket induced from that on X(G), the Lie algebra of G. Lie’s
third theorem asserts that any finite-dimensional Lie algebra g over R arises
in this way from a Lie group G, and in fact there is a unique connected,
simply connected Lie group having g as its Lie algebra.

If G = GL(N,R), the tangent space g = T.G is canonically identified
with the space Maty(R) of N x N-matrices, and one may verify that the
Lie bracket is simply the commutator of matrices. (This is the main reason
for working with X%(G) rather than X7(G), since the latter choice would
have produced minus the commutator.)
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2. GROUP ACTIONS ON MANIFOLDS

2. Group actions on manifolds

An action of a Lie group G on a manifold M is a group homomorphism
A: G — Diff (M) into the group of diffeomorphisms of M, with the property
that the action map G x M — M, (g,x) — A(g)(x) is smooth. It induces
actions on the tangent bundle and cotangent bundle, and hence there are
notions of invariant vector fields X(M)%, invariant differential forms Q(M)%
and so on.

EXAMPLE 2.1. There are three important actions of a Lie group on itself:
The actions by left-and right-multiplication, and the adjoint action:

A*(g)(a) = ga, A%(g)(a) =ag™", Ad(g)(a) = gag™".

An action of a Lie algebra g on a manifold M is a Lie algebra homomor-
phism A: g — X(M) such that the map g x M — TM, (§,z) — A(§)(x) is
smooth.

Given a Lie group action

A: G — Diff (M),

its differential at the group unit defines an action of the Lie algebra g (which
we denote by the same letter). In terms of the actions of vector fields on
functions,

9 .
A f = §|t=0 exp(—t§)"f, {€g.
One calls £); = A(€) the generating vector fields® for the G-action.

EXAMPLE 2.2. The generating vector fields Ad(§) € X(g) for the adjoint
action of G on g are

Ad(§)], = ady(§)

(using the identifications 7, = g). The generating vector fields for the
three natural actions of G on itself are

A(E) = —¢f, AT = &b, Ad(g) = ¢ &R
(Note that the vector field A®(¢) must be left-invariant, since the action

Af(g) commutes with the left-action.) We have [¢¥, (F] = 0, since the left
and right actions commute.

The action of G on M lifts to an action on the tangent bundle T'M. Given
a fixed point x € M of a G-action, so that A(g)z = «x for all g € G, the action
preserves the fiber T, M, defining a linear representation G — GL(T,M).
In particular, the adjoint action

Ad: G — Diff(G)

fixes e, and hence induces a linear action on T,G = g, denoted by the same
letter:
Ad: G — GL(g).

1Some authors use opposite sign conventions, so that £ys is an anti-homomorphism.
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CHAPTER C. BACKGROUND ON LIE GROUPS

Since the adjoint action on G is by group automorphisms, its linearization
acts by Lie algebra automorphisms of g. One also defines an infinitesimal
adjoint action,

adu: g — g, adu(g) = [,U«af]g
Then ad: p + ad, is a Lie algebra homomorphism

ad: g — Der(g)

into the Lie algebra of derivations of g. (A linear map A € End(g) is a
derivation of the Lie bracket if and only if A[¢1, &) = [A&y, &) + [€1, A&2].)

This adjoint representation g — Der(g) of the Lie algebra is the differ-
ential of the adjoint representation G — Aut(g) of the Lie group (note that
Aut(g) is a Lie group with Lie algebra Der(g)).

3. The exponential map

Any ¢ € g = T, G determines a unique 1-parameter subgroup ¢¢: R — G
such that

Ge(ts +t2) = de(t1)de(ta), d(0) =, 8;;5&0 =¢.

In fact, ¢¢ is a solution curve of the left-invariant vector field § L. One defines
the exponential map

exp: g = G, £ ¢¢(1).

For matrices, the abstract exponential map coincides with the usual expo-
nential of matrices as a Taylor series. The 1-parameter subgroup may be
written in terms of the exponential map as ¢¢(t) = exp(t§).

The exponential map is natural with respect to Lie morphisms. Hence,
if : G — H is a morphism of Lie groups, and denoting by the same letter
its differential ¢: g — bh we have exp(¢(£)) = ¢(exp(&)). In particular, this
applies to the adjoint representation Ad: G — GL(g) and its differential
ad: g — gl(g). That is,

o0

Ad(exp()) = explad,) = 3 % ad?
n=0

Since (dgexp)(§) = %\tzo exp(t€) = &, the differential of the exponen-
tial map at the origin is the identity dgexp = id. Hence, by the implicit
function theorem the exponential map gives a diffeomorphism from an open
neighborhood of 0 in g to an open neighborhood of e in G. We are inter-
ested in the differential of exp: g — G at any given point p € g. It is a
linear operator d, exp: g = T, — T4G. Since g is a vector space, T,,g = g
canonically. On the other hand, we may use the left-action to obtain an
isomorphism, d..A¥(g): g — T,G, and hence an isomorphism TG = G x g
by left-trivialization.
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3. THE EXPONENTIAL MAP

THEOREM 3.1. The differential of the exponential map exp: g — G at
p € g is the linear operator dyexp: g — Toyp(,)8 given by the formula,

dy exp = jL(ad#)

where we use left-trivialization to identify Togp ()8 = 8-
Here jL(z) = 1= is the holomorphic function introduced in IV.3.5.

Proor. The differential d, exp(¢) = % }t:O exp(u + t¢) may be written,

duexp() = de(AXexp() o|  (explu) ™ exp(u+10))
Let exp,(v) := exp(sv) and (for any given u, ()
(s, 1) = exp, () ™" exp(p + ).

Write ¥(s) = %f\t:o € g. Thus ¢(1) = d,exp(¢), while ¥(0) = 0 since
¢(0,t) = e for all t. Taking the t-derivative of the equation

) B
p+t¢ = %(exps(wrt@) exp,(u+t¢) " = %<exps(u)¢) ¢ 'expy(p)”!

at t = 0, we obtain

(= %(exps(u)w) exp, ()t — %(exps(ﬂ)) P expy(p) !

0
= oxp, (1) 2 exp (1)

= Ad(exp, (1)) 27

0
= exp(s ad“)ﬁ—f.

That is, g—tﬁ = exp(—sad,)(. Integrating,
1 1 —exp(—ad )
v = ([ ep(osadas) ¢ = OB e O
0 ady,

REMARKS 3.2. (1) Using instead the right action to identify TG =
G X g one obtains

dyexp = jR(adﬂ)

This follows from the formula for the left trivialization, because the
adjoint action of exp p on g is

Ad(exp ) = de A (exp 1) 7t 0 dg A" (exp p),
and since
Ad(exp p)j*(ad,) = et (ad,) = % (ad,).
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(2) In particular, the Jacobian of the exponential map relative to the
left-invariant volume form is the function, y — det(j%(ad,)). while
for the right-invariant volume form one obtains det(jf(ad,)). In
general, the two Jacobians are not the same: Their quotient is the
function

det(ead“) _ etr(ad#).

The function G — R*, g — det(Ad(g)) is a group homomor-
phism called the unimodular character; it relates the left- and
right-invariant volume forms I'* and I'® on G defined by a gen-
erator I' € det(Ag*). The map g — R, p — tr(ad,) is a Lie algebra
homomorphism called the (infinitesimal) unimodular character. A
Lie group is called unimodular if the unimodular character is triv-
ial. For instance, any compact Lie group, and any semi-simple Lie
group, is unimodular. The simply connected Lie group correspond-
ing to the non-trivial 2-dimensional Lie algebra is not unimodular.

If G is connected and g is quadratic (i.e. it admits an Ad-
invariant quadratic form), then G is unimodular. This follows be-
cause in that case, ad, is skew-adjoint, so its trace vanishes. In the
quadratic case, the determinants of j*(ad,) and j#(ad,) coincide,
and are equal to

sinh ad,, /2>
ad, /2

By our results from §4 3.7 this function admits a global analytic
square root.

J(p) = det j(ad,) = det <

4. The vector field %(fL + &Ry

Any £ € g may be viewed as a constant vector field on g. The half-sum
¢ = 1l + ¢%) € X(G) is the closest counterpart of the constant vector

field ¢ € X(g). For example, the vector fields £* ’almost’ commute in the
sense that

1 1 1
(¢, ¢ = Jl6 " = 16, A = S Ad(6.¢)

vanishes at e € G. Note also that

[Ad(€), ¢F] = [€, ¢FF,

parallel to a property of the constant vector field on g.

Let g’ C g denote the subset where the exponential map has maximal
rank. By the formula for d, exp, this is the subset where ad,: g — g has
no eigenvalue of the form 2mv/—1k with k € Z — {0}. Given a vector field
X € X(G), one has a well-defined vector field exp*(X) € X(g') such that
exp*(X), = (duexp) ™ H(Xexpp) for all u € g*. In particular, for £ € g we
can consider

exp® €L, exp* €8, exp* £F.
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Since T,,g = g, both of these vector fields define elements of C*(g’) ® g,
depending linearly on £&. The map taking £ to this vector field is therefore
an element of C*°(g*) ® End(g).

Using left-trivialization of the tangent bundle, we have

(e 1) = (7 (ady)) O = e

Similarly,

foxp" €5, = (%) () = o

The difference with the constant vector field £ is,
(exp”™ €5), — € = ady, fH(ad,) (€) = Ad(f*(ad,,)8),
(exp* €M), — € = ad, fH(ad,)(€) = Ad(f(ad,)€).

¢.

where
1 1

L 1 L g
f(z)_lfefz 2’ f(Z)_erl z
Note that fL(ad,), ff(ad,) € End(g) are well-defined for all u € g’. The
formula shows that the difference between the vector fields exp* £, exp* ¢t
and the constant vector field £ is a vector field in the direction of the orbits
of the adjoint action. Put differently, the radial part of these vector fields
equals £. Finally,

(5 &0 (€7 + €M), — € = f(ady)(ad, &) = Ad (F(ad,)E) |,
where f = 1(fL + f%). That is,

1 1 1 1 1 1

f(z):§< + )—;zicoth(g)—f.

e —1 1—e* z

REMARKS 4.1. The function j%(z)~! = =2

—er—1
ing functions for the Bernoulli numbers By:

‘R -1 _ ? _ &n
") _eZ—l_nz_On!z

is the well-known generat-

The expansion of the function f(z) reads,

1 2. 1 & Ban g
= - thf _— - = n .
1(z) = 5coth(3) = 3 nzl(m)!z

5. Maurer-Cartan forms

The left-invariant Maurer-Cartan form 67 € QY(G) ® g is defined in
terms of its contractions with left-invariant vector fields by

ughot =¢
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Similarly, one defines the right-invariant Maurer-Cartan form 0% € Q'(G)%®
g by
WeMpf =¢.

For matrix Lie groups, one has the formulas
oL = g7tdg, 0% =dg g7

(More precisely, dg is a matrix-valued 1-form on G, to be interpreted as
the pull-back of the coordinate differentials on Maty(R) = RN* under the
inclusion map G — Maty(R).)

PROPOSITION 5.1 (Properties of Maurer-Cartan forms). (1) The Mau-

rer-Cartan forms are related by
o = Ad, 00,
(2) The differential of 0*,0% is given by the Maurer-Cartan equations
ot + 1[0F 0% =0, do" - L[6%, 0% = 0.
(3) The pull-backs of 0©, 0% under group multiplication Mult: G x G —
G, (g1,92) — gi1g2 are given by the formula,
Mult* 6 = Ad, 1 pr] or + prs oL,
Mult* 0% = Ady, prs 8% + pri 6F.
where pry,pry: G X G — G are the two projections.

For matrix Lie groups, all of these results are easily proved from 6% =
g 'dg and 0% = dgg—!. For instance, Mult* 6% is computed as follows:?

(9192) " *d(g192) = g5 *g; "dgrgy * + g5 'dgo.

Consider now the pull-back of the Maurer-Cartan forms under the exponen-
tial map, exp* 0%, exp* 0% € Q'(g) ® g. At any given point u € g, these are
elements of T,g ® g = g* — g. Thus, we can view exp” 0% exp* 67 as maps
g — End(g).

THEOREM 5.2. The maps g — End(g) determined by exp* 0, exp* 07
are given by
po= gt (ady), p— i ad ),

respectively.

2For general groups, use that for all £,¢ € g, the vector field £ + ¢Z € 2(G x G)
(where the subscripts indicate the respective G-factor) is Mult-related to £ 4+ ¢*. Hence
L(EF + ¢5) Mult® 0% = Mult* o(67 4 ¢F)o%.
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6. QUADRATIC LIE GROUPS

Proor. Let p € g and £ € T,,g = g. Then, using left-trivialization of
the tangent bundle,

L&) (exp* 07), = 1(d,u exp(€) 05,
= dy exp(§)
= J'L(adu)({)'
For 6%, just use A% = Ad, oL . O

In a basis e; € g, the Maurer-Cartan forms can be written % = >, 1@
e;. Letting p' be the coordinate functions on g and du’ their differentials,
the Theorem says that

exp* 0t = ZjL(ad#)z dp?
J

where j L(adu)é are the components of the matrix describing j*(ad,). Drop-
ping indices, we may write this as exp* 0% = jF(ad,)(du), where du €
0'(g) ® g is the tautological 1-form.

The half-sum (6% + 6%) is a natural counterpart of du € Q'(g;g). The
Theorem shows

COROLLARY 5.3.
sinh(ad,) — ad,
ady,

3 exp™ (0" +0™) — du = (du) = g(ad,,) ad,,(du)

where g(z) = z‘251“2# is the function introduced in IV.3.5.

6. Quadratic Lie groups

Let G be a Lie group with Lie algebra g. A bilinear form B on g is called
G-invariant if it is invariant under the adjoint action:

B(Ady(€), Adg()) = B(£, )

for all &,¢. If B is furthermore non-degenerate, we will refer to G as a
quadratic Lie group. For instance, any semi-simple Lie group is a quadratic
Lie group, taking B to be the Killing form. The group G = GL(V,R) is
quadratic, using the trace form B(&, () = tr(£¢) on its Lie algebra.

If H is any Lie group, let G = H x bh*, with Lie algebra g = h x h* be
the semi-direct product. That is, g = h ® h* as a vector space, with bracket
relations

[§1 @ w1, &2 @ po] = [61, &2] & (—ad, p2 + adg, ).

Then the bilinear form given by the pairing between h and h* is invariant,
hence H x h* is a quadratic Lie group.
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Given an invariant symmetric bilinear form B on g (not ncecessarily non-
degenerate), one can construct an important 3-form on the group, sometimes
called the Cartan 3-form:

1
n =5 BO%,[0%,0"]) € 2°(G)
PROPOSITION 6.1. The 3-form n is closed: dn = 0. Hence it defines a
de Rham cohomology class [n] € H3(G,R).

PRrROOF. Using the Maurer-Cartan-equation dGL—i—%[GL, 6L] = 0, we have
1 1
— 2 B(16% 651 19% L1y — — = B(oT 19X 10T oL
dn = 5 B8, 67, 6%, 0]) = — 5 B(6". 0", 0%, 6"])
But [0, [0¥,0%]] = 0 by the Jacobi identity for g. O

The pull-back of exp* n of the closed 3-form 7 to g is exact. In fact, the
Poincaré lemma gives an explicit primitive w € Q2(g) with dew = ®*».
Suppose B is non-dgenerate. The identification
0(g) = C=(g) ® A’g" = C%(g) @ 0(g)-
takes w to a function g — o(g).

PROPOSITION 6.2. The function g — o(g) corresponding to the 2-form
w is u— g(ad,), where g(z) = 27 2(sinh(2) — 2).

PROOF. Recall that the transgression of a form on a vector space V'
is given by the pull-back under H: I x V. — V, (t,z) — tx followed by
integration over the fibers over the projection pry: I x X — X. We have,

exp” 0" = j"(adg)d,

hence
H* exp* 0% = j*(tadg)(td¢ + £dt)
=t jl(tade)de + €dt
Consequently
dH* exp* 0% = (1 — exp(—tade))dé A dt.
Hence

1
H*exp*n = ZB(th(adtg)df, (1 — exp(—tade))dé A dt)

= %B(df, t5%(adye) (1 — exp(—t adg))d€ A dt)

_ %B(dﬁ, cosh(tade) — 1d§) d&t

adg
Integrating from ¢ = 0 to 1, we get

. . 1 sinh(ad¢) — ad
(pry)« H exp™n = 5 B(dE, afig Ld¢).
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