User Tools

Site Tools


geometric_algebra

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
geometric_algebra [2020/07/19 17:34] – [Articles] pbkgeometric_algebra [2020/11/19 01:14] – [Historical] pbk
Line 40: Line 40:
  
   * [[https://duckduckgo.com/c/Geometric_algebra|Geometric Algebra]] topic at DuckDuckGo   * [[https://duckduckgo.com/c/Geometric_algebra|Geometric Algebra]] topic at DuckDuckGo
 +
 +  * [[https://github.com/topics/geometric-algebra|Geometric Algebra]] topic at GitHub
  
 ==== General ==== ==== General ====
Line 152: Line 154:
   * [[https://en.wikipedia.org/wiki/Vector_space|Vector space]]   * [[https://en.wikipedia.org/wiki/Vector_space|Vector space]]
   * [[https://en.wikipedia.org/wiki/Quaternion|Quaternion]]   * [[https://en.wikipedia.org/wiki/Quaternion|Quaternion]]
 +  * [[https://en.wikipedia.org/wiki/Biquaternion|Biquaternion]]
   * [[https://en.wikipedia.org/wiki/Octonion|Octonion]]   * [[https://en.wikipedia.org/wiki/Octonion|Octonion]]
   * [[https://en.wikipedia.org/wiki/Spinor|Spinor]]   * [[https://en.wikipedia.org/wiki/Spinor|Spinor]]
Line 314: Line 317:
   * [[https://skillsmatter.com/skillscasts/13986-geometric-algebra-in-fsharp|Geometric Algebra in F#]] - //Andrew Willshire//.   * [[https://skillsmatter.com/skillscasts/13986-geometric-algebra-in-fsharp|Geometric Algebra in F#]] - //Andrew Willshire//.
   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.
 +  * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//
 +  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] - //sudgylacmoe//
 +  * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.
 ===== Computing frameworks ===== ===== Computing frameworks =====
   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.
Line 354: Line 359:
   * [[http://www.siue.edu/~sstaple/index_files/research.html|CliffMath]] - Clifford algebra computations, including zeon, sym-Clifford, and idem-Clifford subalgebras, //George Stacey Staples//.   * [[http://www.siue.edu/~sstaple/index_files/research.html|CliffMath]] - Clifford algebra computations, including zeon, sym-Clifford, and idem-Clifford subalgebras, //George Stacey Staples//.
   * [[https://github.com/Prograf-UFF/TbGAL|TbGAL]] - Tensor-Based Geometric Algebra C++/Python Library, //Eduardo Vera Sousa, Leandro A. F. Fernandes//.   * [[https://github.com/Prograf-UFF/TbGAL|TbGAL]] - Tensor-Based Geometric Algebra C++/Python Library, //Eduardo Vera Sousa, Leandro A. F. Fernandes//.
 +  * [[https://github.com/markisus/g3|G3]] - A library for the Geometric Algebra of the Vector Space R^3, //Markisus//.
 +  * [[https://github.com/vincentnozick/garamon|Garamon Generator]] - Geometric Algebra Recursive and Adaptative Monster is a generator of C++ libraries dedicated to Geometric Algebra, //Vincent Nozick, Stephane Breuils//.
 ===== Articles ===== ===== Articles =====
   * [[http://geocalc.clas.asu.edu/pdf/OerstedMedalLecture.pdf|Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics]] (2002) - //David Hestenes//   * [[http://geocalc.clas.asu.edu/pdf/OerstedMedalLecture.pdf|Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics]] (2002) - //David Hestenes//
Line 406: Line 413:
   * [[https://www.researchgate.net/publication/228955605_A_brief_introduction_to_Clifford_algebra|A brief introduction to Clifford Algebra]] (2010) - //Silvia Franchini, Giorgio Vassallo, Filippo Sorbello//   * [[https://www.researchgate.net/publication/228955605_A_brief_introduction_to_Clifford_algebra|A brief introduction to Clifford Algebra]] (2010) - //Silvia Franchini, Giorgio Vassallo, Filippo Sorbello//
 Geometric algebra (also known as Clifford algebra) is a powerful mathematical tool that offers a natural and direct way to model geometric objects and their transformations. It is gaining growing attention in different research fields as physics, robotics, CAD/CAM and computer graphics. Clifford algebra makes geometric objects (points, lines and planes) into basic elements of computation and defines few universal operators that are applicable to all types of geometric elements. This paper provides an introduction to Clifford algebra elements and operators. Geometric algebra (also known as Clifford algebra) is a powerful mathematical tool that offers a natural and direct way to model geometric objects and their transformations. It is gaining growing attention in different research fields as physics, robotics, CAD/CAM and computer graphics. Clifford algebra makes geometric objects (points, lines and planes) into basic elements of computation and defines few universal operators that are applicable to all types of geometric elements. This paper provides an introduction to Clifford algebra elements and operators.
 +
 +  * [[https://vixra.org/pdf/1203.0011v1.pdf|A Very Brief Introduction to Clifford Algebra]] (2012) - //Stephen Crowley//
 +This article distills many of the essential definitions from the very thorough book, Clifford Algebras: An Introduction, by Dr D.J.H. Garling, with some minor additions.
  
   * [[http://www2.montgomerycollege.edu/departments/planet/planet/Numerical_Relativity/bookGA.pdf|An Introduction to Geometric Algebra and Calculus]] (2014) - //Alan Bromborsky//   * [[http://www2.montgomerycollege.edu/departments/planet/planet/Numerical_Relativity/bookGA.pdf|An Introduction to Geometric Algebra and Calculus]] (2014) - //Alan Bromborsky//
Line 824: Line 834:
 This thesis investigates the emerging field of Conformal Geometric Algebra (CGA) as a new basis for a CG framework. Computer Graphics is, fundamentally, a particular application of geometry. From a practical standpoint many of the low-level problems to do with rasterising triangles and projecting a three-dimensional world onto a computer screen have been solved and hardware especially designed for this task is available. This thesis investigates the emerging field of Conformal Geometric Algebra (CGA) as a new basis for a CG framework. Computer Graphics is, fundamentally, a particular application of geometry. From a practical standpoint many of the low-level problems to do with rasterising triangles and projecting a three-dimensional world onto a computer screen have been solved and hardware especially designed for this task is available.
  
-  * [[http://home.deib.polimi.it/tubaro/Journals/Journal_2008_DA.pdf|3D Motion from structures of points, lines and planes]] (2007) - //Andrea Dell'Acqua, Augusto Sarti, Stefano Tubaro//+  * [[https://tubaro.faculty.polimi.it/Journals/Journal_2008_DA.pdf|3D Motion from structures of points, lines and planes]] (2007) - //Andrea Dell'Acqua, Augusto Sarti, Stefano Tubaro//
 In this article we propose a method for estimating the camera motion from a video-sequence acquired in the presence of general 3D structures. Solutions to this problem are commonly based on the tracking of point-like features, as they usually back-project onto viewpoint-invariant 3D features. In order to improve the robustness, the accuracy and the generality of the approach, we are interested in tracking and using a wider class of structures. In addition to points, in fact, we also simultaneously consider lines and planes. In order to be able to work on all such structures with a compact and unified formalism, we use here the Conformal Model of Geometric Algebra, which proved very powerful and flexible. In this article we propose a method for estimating the camera motion from a video-sequence acquired in the presence of general 3D structures. Solutions to this problem are commonly based on the tracking of point-like features, as they usually back-project onto viewpoint-invariant 3D features. In order to improve the robustness, the accuracy and the generality of the approach, we are interested in tracking and using a wider class of structures. In addition to points, in fact, we also simultaneously consider lines and planes. In order to be able to work on all such structures with a compact and unified formalism, we use here the Conformal Model of Geometric Algebra, which proved very powerful and flexible.
  
Line 993: Line 1003:
  
   * [[https://www.researchgate.net/publication/264423339_An_invitation_to_Clifford_Analysis|Una Invitación al Análisis de Clifford]] (2003) - //Richard Delanghe, Juan Bory-Reyes//   * [[https://www.researchgate.net/publication/264423339_An_invitation_to_Clifford_Analysis|Una Invitación al Análisis de Clifford]] (2003) - //Richard Delanghe, Juan Bory-Reyes//
-Una panorámica de los tópicos principales y herramientas básicas del Análisis de Clifford se presenta en este artículo, al mismo tiempo, las principales fórmulas integrales relacionadas con la integral tipo Cauchy -- y su versión singular -- son analizadas en un contexto multidimensional, con el uso de las técnicas de álgebras de Clifford. Se incluyen también algunas notas históricas sobre el desarrollo de este campo de investigación.+Una panorámica de los tópicos principales y herramientas básicas del Análisis de Clifford se presenta en este artículo, al mismo tiempo, las principales fórmulas integrales relacionadas con la integral tipo Cauchy --- y su versión singular --- son analizadas en un contexto multidimensional, con el uso de las técnicas de álgebras de Clifford. Se incluyen también algunas notas históricas sobre el desarrollo de este campo de investigación.
  
   * [[http://downloads.hindawi.com/journals/abb/2007/502679.pdf|Surface Approximation using Growing Self-Organizing Nets and Gradient Information]] (2007) - //Jorge Rivera-Rovelo, Eduardo Bayro-Corrochano//   * [[http://downloads.hindawi.com/journals/abb/2007/502679.pdf|Surface Approximation using Growing Self-Organizing Nets and Gradient Information]] (2007) - //Jorge Rivera-Rovelo, Eduardo Bayro-Corrochano//
Line 1038: Line 1048:
  
   * [[http://www.cs.ox.ac.uk/people/david.reutter/AtiyahSinger_Essay.pdf|The Heat Equation and the Atiyah-Singer Index Theorem]] (2015) - //David Reutter//   * [[http://www.cs.ox.ac.uk/people/david.reutter/AtiyahSinger_Essay.pdf|The Heat Equation and the Atiyah-Singer Index Theorem]] (2015) - //David Reutter//
-The Atiyah-Singer index theorem is a milestone of twentieth century mathematics. Roughly speaking, it relates a global analytical datum of a manifold -- the number of solutions of a certain linear PDE -- to an integral of local topological expressions over this manifold. The index theorem provided a link between analysis, geometry and topology, paving the way for many further applications along these lines.+The Atiyah-Singer index theorem is a milestone of twentieth century mathematics. Roughly speaking, it relates a global analytical datum of a manifold --- the number of solutions of a certain linear PDE --- to an integral of local topological expressions over this manifold. The index theorem provided a link between analysis, geometry and topology, paving the way for many further applications along these lines.
  
   * [[http://www.siue.edu/~sstaple/index_files/CODecompAccepted2015.pdf|Clifford algebra decompositions of conformal orthogonal group elements]] (2015) - //G. Stacey Staples, David Wylie//   * [[http://www.siue.edu/~sstaple/index_files/CODecompAccepted2015.pdf|Clifford algebra decompositions of conformal orthogonal group elements]] (2015) - //G. Stacey Staples, David Wylie//
Line 1310: Line 1320:
   * [[https://arxiv.org/pdf/1911.08658|Spinors of real type as polyforms and the generalized Killing equation]] (2019) - //Vicente Cortes, Calin Lazaroiu, C. S. Shahbazi//   * [[https://arxiv.org/pdf/1911.08658|Spinors of real type as polyforms and the generalized Killing equation]] (2019) - //Vicente Cortes, Calin Lazaroiu, C. S. Shahbazi//
 We develop a new framework for the study of generalized Killing spinors, where generalized Killing spinor equations, possibly with constraints, can be formulated equivalently as systems of partial differential equations for a polyform satisfying algebraic relations in the Kähler-Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying manifold. At the core of this framework lies the characterization, which we develop in detail, of the image of the spinor squaring map of an irreducible Clifford module Σ of real type as a real algebraic variety in the Kähler-Atiyah algebra, which gives necessary and sufficient conditions for a polyform to be the square of a real spinor. We apply these results to Lorentzian four-manifolds, obtaining a new description of a real spinor on such a manifold through a certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-dimensional supersymmetric configurations of heterotic supergravity. In particular, we find new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting real Killing spinors, some of which are deformations of the metric of AdS_4 space-time. We develop a new framework for the study of generalized Killing spinors, where generalized Killing spinor equations, possibly with constraints, can be formulated equivalently as systems of partial differential equations for a polyform satisfying algebraic relations in the Kähler-Atiyah bundle constructed by quantizing the exterior algebra bundle of the underlying manifold. At the core of this framework lies the characterization, which we develop in detail, of the image of the spinor squaring map of an irreducible Clifford module Σ of real type as a real algebraic variety in the Kähler-Atiyah algebra, which gives necessary and sufficient conditions for a polyform to be the square of a real spinor. We apply these results to Lorentzian four-manifolds, obtaining a new description of a real spinor on such a manifold through a certain distribution of parabolic 2-planes in its cotangent bundle. We use this result to give global characterizations of real Killing spinors on Lorentzian four-manifolds and of four-dimensional supersymmetric configurations of heterotic supergravity. In particular, we find new families of Einstein and non-Einstein four-dimensional Lorentzian metrics admitting real Killing spinors, some of which are deformations of the metric of AdS_4 space-time.
 +
 +  * [[https://link.springer.com/content/pdf/10.1007/s00006-019-0987-7.pdf|Garamon: A Geometric Algebra Library Generator]] (2019) - //Stephane Breuils, Vincent Nozick, Laurent Fuchs//
 +This paper presents both a recursive scheme to perform Geometric Algebra operations over a prefix tree, and Garamon, a C++ library generator implementing these recursive operations. While for low dimension vector spaces, precomputing all the Geometric Algebra products is an efficient strategy, it fails for higher dimensions where the operation should be computed at run time. This paper describes how a prefix tree can be a support for a recursive formulation of Geometric Algebra operations. This recursive approach presents a much better complexity than the usual run time methods. This paper also details how a prefix tree can represent efficiently the dual of a multivector. These results constitute the foundations for Garamon, a C++ library generator synthesizing efficient C++/Python libraries implementing Geometric Algebra in both low and higher dimensions, with any arbitrary metric. Garamon takes advantage of the prefix tree formulation to implement Geometric Algebra operations on high dimensions hardly accessible with state-of-the-art software implementations. 
  
   * [[https://arxiv.org/pdf/1911.07145|Geometric Manifolds Part I: The Directional Derivative of Scalar, Vector, Multivector, and Tensor Fields]] (2020) - //Joseph C. Schindler//   * [[https://arxiv.org/pdf/1911.07145|Geometric Manifolds Part I: The Directional Derivative of Scalar, Vector, Multivector, and Tensor Fields]] (2020) - //Joseph C. Schindler//
Line 1345: Line 1358:
  
 ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^ ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^
-| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?400}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |+| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?600}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |
 | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        | | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        |
 | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
Line 1433: Line 1446:
 | [[https://www.amazon.com/dp/331990664X|{{:ga:a_geometric_algebra_invitation-lavor_xambo.jpg?100}}]] | **A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry (2018)**\\ //Carlile Lavor, Sebastià Xambó-Descamps//\\ This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | | [[https://www.amazon.com/dp/331990664X|{{:ga:a_geometric_algebra_invitation-lavor_xambo.jpg?100}}]] | **A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry (2018)**\\ //Carlile Lavor, Sebastià Xambó-Descamps//\\ This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
 | [[https://www.amazon.com/dp/3319748289|{{:ga:geometric-algebra-applications_vol_i-bayro.jpg?100}}]] | **Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing (2018)**\\ //Eduardo Bayro-Corrochano//\\ The goal is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/dp/3319748289|{{:ga:geometric-algebra-applications_vol_i-bayro.jpg?100}}]] | **Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing (2018)**\\ //Eduardo Bayro-Corrochano//\\ The goal is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
 +| [[https://www.amazon.com/dp/3030349764|{{:ga:geometric-algebra-applications_vol_ii-bayro.jpg?100}}]] | **Geometric Algebra Applications Vol. II: Robot Modelling and Control (2020)**\\ //Eduardo Bayro-Corrochano//\\ This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric algebra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides examples to help readers learn how to compute using geometric entities and geometric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltonians equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum computing, robotics and control engineering using the geometric algebra framework.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
 | [[https://www.amazon.com/dp/1498748384|{{:ga:introduction_to_geometric_algebra_computing-hildenbrand.jpg?100}}]] | **Introduction to Geometric Algebra Computing (Computer Vision) (2018)**\\ //Dietmar Hildenbrand//\\ This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/dp/1498748384|{{:ga:introduction_to_geometric_algebra_computing-hildenbrand.jpg?100}}]] | **Introduction to Geometric Algebra Computing (Computer Vision) (2018)**\\ //Dietmar Hildenbrand//\\ This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
 | [[https://www.amazon.com/dp/3319946366|{{:ga:imaginary_mathematics_for_computer_science-vince.jpg?100}}]] | **Imaginary Mathematics for Computer Science (2018)**\\ //John Vince//\\ The imaginary unit //i// has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, Rene Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, //i// has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/dp/3319946366|{{:ga:imaginary_mathematics_for_computer_science-vince.jpg?100}}]] | **Imaginary Mathematics for Computer Science (2018)**\\ //John Vince//\\ The imaginary unit //i// has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, Rene Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, //i// has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
Line 1443: Line 1457:
 | [[https://www.amazon.com/Advanced-Calculus-Fundamentals-Carlos-Polanco/dp/9811415072|{{:ga:advanced_calculus-polanco.jpg?100}}]] | **Advanced Calculus - Fundamentals of Mathematics (2019)**\\ // Carlos Polanco//\\ Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations.This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms.Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/Advanced-Calculus-Fundamentals-Carlos-Polanco/dp/9811415072|{{:ga:advanced_calculus-polanco.jpg?100}}]] | **Advanced Calculus - Fundamentals of Mathematics (2019)**\\ // Carlos Polanco//\\ Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations.This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms.Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
 | [[https://www.amazon.com/Geometric-Multiplication-Vectors-Introduction-Mathematics/dp/3030017559|{{:ga:geometric_multiplication_of_vectors-josipovic.jpg?100}}]] | **Geometric Multiplication of Vectors: An Introduction to Geometric Algebra in Physics (2019)**\\ // Miroslav Josipović//\\ Enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/Geometric-Multiplication-Vectors-Introduction-Mathematics/dp/3030017559|{{:ga:geometric_multiplication_of_vectors-josipovic.jpg?100}}]] | **Geometric Multiplication of Vectors: An Introduction to Geometric Algebra in Physics (2019)**\\ // Miroslav Josipović//\\ Enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
 +| [[https://www.amazon.com/dp/1704596629|{{:ga:matrix-gateway-to-geometric-algebra_sobczyk.jpg?100}}]] | **Matrix Gateway to Geometric Algebra, Spacetime and Spinors (2019)**\\ // Garret Sobczyk//\\ Geometric algebra has been presented in many different guises since its invention by William Kingdon Clifford shortly before his death in 1879. In this book we fully integrate the ideas of geometric algebra directly into the fabric of matrix linear algebra. A geometric matrix is a real or complex matrix which is identified with a unique geometric number. The matrix product of two geometric matrices is just the product of the corresponding geometric numbers. Any equation can be either interpreted as a matrix equation or an equation in geometric algebra, thus fully unifying the two languages. The first 6 chapters provide an introduction to geometric algebra, and the classification of all such algebras. The last 3 chapters explore more advanced topics in the application of geometric algebras to Pauli and Dirac spinors, special relativity, Maxwell’s equations, quaternions, split quaternions, and group manifolds. They are included to highlight the great variety of topics that are imbued with new geometric insight when expressed in geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
 | [[https://www.amazon.com/Clifford-Algebras-Zeons-Geometry-Combinatorics/dp/9811202575|{{:ga:clifford_algebras_and_zeons-staples.jpg?100}}]] | **Clifford Algebras And Zeons: Geometry to Combinatorics and Beyond (2020)**\\ // George Stacey Staples//\\ Clifford algebras have many well-known applications in physics, engineering, and computer graphics. Zeon algebras are subalgebras of Clifford algebras whose combinatorial properties lend them to graph-theoretic applications such as enumerating minimal cost paths in dynamic networks. This book provides a foundational working knowledge of zeon algebras, their properties, and their potential applications in an increasingly technological world. As the first textbook to explore algebraic and combinatorial properties of zeon algebras in depth, it is suitable for interdisciplinary study in analysis, algebra, and combinatorics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | | [[https://www.amazon.com/Clifford-Algebras-Zeons-Geometry-Combinatorics/dp/9811202575|{{:ga:clifford_algebras_and_zeons-staples.jpg?100}}]] | **Clifford Algebras And Zeons: Geometry to Combinatorics and Beyond (2020)**\\ // George Stacey Staples//\\ Clifford algebras have many well-known applications in physics, engineering, and computer graphics. Zeon algebras are subalgebras of Clifford algebras whose combinatorial properties lend them to graph-theoretic applications such as enumerating minimal cost paths in dynamic networks. This book provides a foundational working knowledge of zeon algebras, their properties, and their potential applications in an increasingly technological world. As the first textbook to explore algebraic and combinatorial properties of zeon algebras in depth, it is suitable for interdisciplinary study in analysis, algebra, and combinatorics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  
geometric_algebra.txt · Last modified: 2023/12/30 00:23 by pbk

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki