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A Beginner’s Guide
to 6-D Vectors (Part 1)

What They Are, How They Work, and How to Use Them

BY ROY FEATHERSTONE

A
rigid body has six degrees of motion freedom, so
why not use six-dimensional (6-D) vectors to de-
scribe its motions and the forces acting upon it? In
fact, some roboticists already do this, and the
practice is becoming more common. The pur-

pose of this tutorial is to present a beginner’s guide to 6-D vec-
tors in sufficient detail that a reader can begin to use them as a
practical problem-solving tool right away. This tutorial covers
the basics, and Part 2 will cover the application of 6-D vectors
to a variety of robot kinematics and dynamics calculations.

6-D vectors come in various forms. The particular kind pre-
sented here is called spatial vectors. They are the tool that the
author has been using for nearly 30 years to invent dynamics
algorithms and write dynamics calculation software. Other kinds
of 6-D vector include screws, motors, and Lie algebras. More
will be said about them at the end of this tutorial. The differ-
ences between the various kinds of 6-D vector are relatively
small. The more you understand any one of them, the easier it
gets to understand the others.

The obvious advantage of 6-D vectors is that they cut the
volume of algebra. Instead of having to define two three-
dimensional (3-D) vectors to describe a force, another two to
describe an acceleration, and writing two equations of motion
for each body, a 6-D vector notation lets you pair up corre-
sponding 3-D vectors and equations. The immediate result is a
tidier, more compact notation involving fewer quantities and
fewer equations. However, anyone who thinks that 6-D vectors

are only a convenient notation for organizing 3-D vectors is
missing half the point. 6-D vectors are tools for thought. They
have their own physical meanings and mathematical properties.
They let you solve a problem more directly, and at a higher
level of abstraction, by letting you think in 6-D, which is easier
than it sounds.

Using spatial vectors (and other kinds of 6-D vector) lets
you formulate a problem more succinctly, solve it more quickly
and in fewer steps, present the solution more clearly to others,
implement it in fewer lines of code, and debug the software
more easily. Furthermore, there is no loss of efficiency: spatial-
vector software can be just as efficient as 3-D-vector software,
despite the higher level of abstraction.

The rest of this tutorial is chiefly concerned with explaining
what spatial vectors are and how to use them. It highlights the
differences between solving a rigid-body problem using 3-D vec-
tors and solving the same problem using spatial vectors, so that
the reader can get an idea of what it means to think in 6-D.

A Note on Notation
When using spatial vectors, it is convenient to employ symbols
like f , v, and a (or _v) to denote quantities like force, velocity,
and acceleration. However, these same symbols are equally
useful for 3-D vectors. Thus, whenever spatial and 3-D vectors
are discussed together, there is a possibility of name clashes. To
resolve these clashes, we shall use the following rule: in any
context where a spatial symbol needs to be distinguished from
a 3-D symbol, the spatial symbol is given a hat (e.g., f̂ and v̂).
These hats are dropped when they are no longer needed. AnDigital Object Identifier 10.1109/MRA.2010.937853
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Solving a Two-Body Dynamics Problem Using 3-D Vectors

We are given a rigid-body system consisting of two bodies,
B1 and B2, connected by a revolute joint [S1] The bodies

have masses of m1 and m2, centers of mass located at the points
C1 and C2, and rotational inertias of I1 and I2 about their respec-
tive centers of mass. Both bodies are initially at rest. The joint’s
axis of rotation passes through the point P in the direction given
by s. A system of forces acts on B1, causing both bodies to accel-
erate. This system is equivalent to a single force f acting on a line
passing through C1 together with couple n. These forces impart
an angular acceleration of _x1 to B1 and a linear acceleration of
a1 to its center of mass. The problem is to express a1 and _x1 in
terms of f and n (Figure S1).
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Figure S1. Problem diagram using 3-D vectors.

Solution
Let f1, n1, f2, and n2 be the net forces and couples acting on
B1 and B2, respectively, where the lines of action of f1 and f2

pass through C1 and C2, respectively; let _x2 and a2 be the
angular acceleration of B2 and the linear acceleration of its
center of mass; let Pa1 , P _x1 , Pa2, and P _x2 be the linear and
angular accelerations of B1 and B2 expressed at P; and let P f2,
Pn2, 1f2, and 1n2 be the net force and couple acting on B2

expressed at P and C1, respectively. As the system of applied
forces acts only on B1, the net force and couple acting on B2

are also the net force and couple transmitted through the
joint. Let us also define r1 ¼ C1P

��!
and r2 ¼ C2P

��!
, and let a be

the joint acceleration variable.
The equations of motion of the two bodies, expressed at

their centers of mass, are

f1 ¼ m1 a1, (S1)

n1 ¼ I1 _x1, (S2)

f2 ¼ m2 a2, (S3)

and

n2 ¼ I2 _x2: (S4)

There are no velocity terms because the bodies are at rest.
The rules for transferring forces and accelerations (of bodies
at rest) from one point to another provide us with the fol-
lowing relationships between quantities referred to C1, C2,
and P:

Pa1 ¼ a1 � r1 3 _x1, (S5)
Pa2 ¼ a2 � r2 3 _x2, (S6)

P _x1 ¼ _x1, (S7)
P _x2 ¼ _x2, (S8)
1f2 ¼ Pf2 ¼ f2, (S9)
Pn2 ¼ n2 � r2 3 f2, (S10)

and

1n2 ¼ n2 þ ( r1 � r2) 3 f2: (S11)

If B1 exerts 1f2 and 1n2 on B2 then B2 exerts �1f2 and
�1n2 on B1 (Newton’s third law expressed at C1); so, the net
force and couple acting on B1 are

f1 ¼ f �1f2,

n1 ¼ n�1n2,

from which we get [via (S9) and (S11)]

f ¼ f1 þ f2, (S12)

and

n ¼ n1 þ n2 þ ( r1 � r2) 3 f2: (S13)

The joint allows B2 one degree of motion freedom relative
to B1 and imposes one constraint on the couple transmitted
from B1 to B2. Expressed at P, the constraint equations are

Pa2 ¼ Pa1, (S14)
P _x2 ¼ P _x1 þ s a, (S15)

and

sT Pn2 ¼ 0, (S16)

where a is the unknown joint acceleration variable. There is
no constraint on P f2: (S16) is sufficient to ensure that the
force and couple transmitted by the joint perform no work
in the direction of relative motion permitted by the joint.

We are now ready to solve the problem. Let us start by
calculating a2 and _x2 in terms of a1, _x1 and a. From (S8),
(S15), and (S7), we have

_x2 ¼ P _x2

¼ P _x1 þ s a
¼ _x1 þ s a, (S17)

and from (S6), (S14), (S17), and (S5) we have

a2 ¼ Pa2 þ r2 3 _x2

¼ Pa1 þ r2 3 ( _x1 þ s a)
¼ a1 � r1 3 _x1 þ r2 3 ( _x1 þ s a)
¼ a1 þ ( r2 � r1) 3 _x1 þ r2 3 s a: (S18)

Now let us calculate a. From (S16), (S10), (S3), (S4), (S17),
and (S18), we get
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0 ¼ sT Pn2

¼ sT(n2 � r2 3 f2)

¼ sT( I2 _x2 �m2 r2 3 a2)

¼ sT( I2 ( _x1 þ s a)�m2 r2 3

(a1 þ ( r2 � r1) 3 _x1 þ r2 3 s a)) :

Collecting terms in a gives

sT( I2 s�m2 r2 3 ( r2 3 s)) a

þ sT( I2 _x1 �m2 r2 3 (a1 þ (r2 � r1) 3 _x1)) ¼ 0 ,

hence

a ¼ � sT( I2 _x1 �m2 r2 3 (a1 þ ( r2 � r1) 3 _x1))
sT( I2 s�m2 r2 3 ( r2 3 s))

: (S19)

This equation is only valid if the denominator is not equal
to zero, so we must investigate the necessary conditions for
it to be nonzero. This problem can be solved using the fol-
lowing trick. For any two vectors u and v, the cross product
u3 v can be expressed in the form u3 v ¼ ~u v, where ~u is
the skew-symmetric matrix:

~u ¼
0 �uz uy
uz 0 �ux
�uy ux 0

" #
:

Using this trick, we can express the denominator in the form
sTJ s, where

J ¼ I2 �m2 ~r2 ~r2

¼ I2 þm2 ~rT2 ~r2 : (S20)

J is therefore the sum of an SPD matrix and an SPSD matrix,
hence itself also SPD, so the denominator of (S19) is guar-
anteed to be strictly greater than zero. Substituting (S20)
into (S19) gives us the following simplified expression
for a:

a ¼ � sT( J _x1 �m2 r2 3 (a1 � r1 3 _x1))
sTJ s

: (S21)

The next step is to express f and n in terms of a1, _x1, and
a, and then to eliminate a using (S21). Let us start with f .
From (S12), (S1), (S3), and (S18), we get

f ¼ f1 þ f2

¼ m1 a1 þm2 a2

¼ m1 a1 þm2(a1 þ ( r2 � r1) 3 _x1 þ r2 3 s a)
¼ (m1 þm2)a1 þm2( r2 � r1) 3 _x1 þm2 r2 3 s a :

Eliminating a using (S21) gives

f ¼ (m1 þm2)a1 þm2( r2 � r1) 3 _x1

�m2
r2 3 s sT( J _x1 �m2 r2 3 (a1 � r1 3 _x1))

sTJ s
;

and collecting terms in a1 and _x1 gives

f ¼ m1 þm2 þm2
2

~r2 s s
T ~r2

sTJ s

� �
a1

þ m2(~r2 � ~r1)�m2
~r2 s s

T( J þm2 ~r2 ~r1)
sTJ s

� �
_x1 : (S22)

Repeating the procedure for n, (S13), (S2), (S3), (S4), (S17),
and (S18) give

n ¼ n1 þ n2 þ ( r1 � r2) 3 f2

¼ I1 _x1 þ I2 _x2 þm2( r1 � r2) 3 a2

¼ I1 _x1 þ I2( _x1 þ s a)þm2( r1 � r2) 3

(a1 þ ( r2 � r1) 3 _x1 þ r2 3 s a)

¼ ( I1 þ I2 �m2(~r1 �~r2)2) _x1

þm2(~r1 �~r2)a1 þ Ks a , (S23)

where

K ¼ I2 þm2(~r1 �~r2)~r2
¼ J þm2 ~r1 ~r2 : (S24)

Note that (S21) can now be simplified to

a ¼ � sT(KT _x1 �m2 ~r2 a1)
sTJ s

: (S25)

Eliminating a from (S23) using (S25) gives

n ¼ ðI1 þ I2 �m2(~r1 �~r2)2Þ _x1

þm2(~r1 �~r2)a1 �
Ks sTðKT _x1 �m2 ~r2 a1Þ

sTJ s
,

and collecting terms in _x1 and a1 gives

n ¼ I1 þ I2 �m2(~r1 �~r2)2 � Ks sTKT

sTJ s

� �
_x1

þ m2(~r1 �~r2)þm2
Ks sT~r2
sTJ s

� �
a1 : (S26)

The final step is to combine (S22) and (S26) into a single
equation:

f
n

� �
¼ A B

C D

� �
a1
_x1

� �
, (S27)

where

A ¼ (m1 þm2) 1333 þm2
2

~r2 s s
T ~r2

sTJ s
, (S28)

B ¼ m2(~r2 �~r1)�m2
~r2 s s

TKT

sTJ s
, (S29)

C ¼ m2(~r1 �~r2)þm2
Ks sT~r2
sTJ s

, (S30)

and

D ¼ I1 þ I2 �m2(~r1 �~r2)2 � Ks sTKT

sTJ s
: (S31)

1333 is an identity matrix. The solution to the original prob-
lem is then

a1
_x1

� �
¼ A B

C D

� ��1
f
n

� �
: (S32)

Reference
[S1] R. Featherstone. (2010). Spatial vector algebra [Online]. Avail-

able: http://users.cecs.anu.edu.au/�roy/spatial/COURTESY OF R. FEATHERSTONE, 2010.
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alternative strategy, which works just as well, is to distinguish
the 3-D symbols from the spatial ones by marking them with
arrows (e.g.,~f and~v ). Rules like this provide a degree of flexi-
bility to the user, and are preferable to simpler rules like “all
spatial symbols have hats,” which just lead to an unnecessary
sea of hats—a nuisance to read and write.

It is sometimes useful to distinguish between a coordi-
nate vector and the quantity it represents. This will be done
by underlining the coordinate vector. Thus, you will occa-
sionally see a symbol like v or v̂ used to denote the coordinate
vector representing v or v̂. This notational device is used only
where needed.

A Worked Example
The main message of this tutorial is that spatial vectors are not
merely a convenient way of pairing up 3-D vectors but are a
problem-solving tool in their own right. Spatial vectors have
their own physical interpretations, their own equations and
formulae, and their own rules of use; and the best way to use
them is to think directly in 6-D.

Perhaps the best way to explain is by means of a worked
example, comparing the 3-D and 6-D approach to solving a
rigid-body problem. “Solving a Two-Body Dynamics Prob-
lem Using 3-D Vectors” presents a detailed worked example
of how to solve a simple two-body dynamics problem using

Solving a Two-Body Dynamics Problem Using Spatial Vectors

We are given a rigid-body system consisting of two
bodies, B1 and B2, connected by a revolute joint [S2].

The bodies have inertias of I1 and I2, respectively, and they
are initially at rest. The joint’s rotation axis is s. A force f is
applied to B1, causing both bodies to accelerate. The prob-
lem is to calculate the acceleration of B1 as a function of f
(Figure S2).

s

B1
a1

I1
I2

B2

f

fJ

Figure S2. Problem diagram using spatial vectors.

Solution
Let a1 and a2 be the accelerations of the two bodies, and let
f J be the force transmitted from B1 to B2 through the joint.
The net forces acting on the two bodies are therefore f � f J

and f J, respectively, and their equations of motion are

f � f J ¼ I1 a1 (S33)

and

f J ¼ I2 a2: (S34)

There are no velocity terms because the bodies are at rest.
The joint permits B2 to accelerate relative to B1 about the
axis specified by s; so, a2 can be expressed in the form

a2 ¼ a1 þ s a, (S35)

where a is the joint acceleration variable. Again, there are no
velocity terms because the bodies are at rest. This motion

constraint is implemented by f J, which is the joint constraint
force, so f J must satisfy

sTf J ¼ 0, (S36)

i.e., the constraint force does no work in the direction of
motion allowed by the joint.

Given (S33)–(S36), the problem is solved as follows. First,
substitute (S35) into (S34), giving

f J ¼ I2 (a1 þ s a) : (S37)

Substituting (S37) into (S36) gives

sTI2 (a1 þ s a) ¼ 0 ,

from which we get the following expression for a:

a ¼ � sTI2 a1

sTI2 s
: (S38)

Substituting (S38) back into (S37) gives

f J ¼ I2 a1 �
s sTI2
sTI2 s

a1

� �
,

and substituting this equation back into (S33) gives

f ¼ I1 a1 þ I2 a1 �
I2 s s

TI2
sTI2 s

a1

¼ I1 þ I2 �
I2 s s

TI2
sTI2 s

� �
a1 :

The expression in brackets is nonsingular and may therefore
be inverted to express a1 in terms of f :

a1 ¼ I1 þ I2 �
I2 s s

TI2
sTI2 s

� ��1

f : (S39)

Reference
[S2] R. Featherstone. (2010). Spatial vector algebra [Online]. Avail-

able: http://users.cecs.anu.edu.au/�roy/spatial/

COURTESY OF R. FEATHERSTONE, 2010.
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3-D vectors, and “Solving a Two-Body Dynamics Problem
Using Spatial Vectors” shows how to solve the same problem
using spatial vectors. We shall refer to them as the 3-D exam-
ple and the spatial example, respectively. The 3-D example
employs the methods of 3-D vectorial dynamics, and the spatial
example employs the methods of spatial vector algebra. Even
the briefest glance reveals that the spatial example is simpler in
every aspect: the problem statement is shorter, the diagram is
simpler, and the solution is much shorter. Let us now examine
these examples in more detail.

Starting with the 3-D example, eight quantities are needed
to describe the rigid-body system: the mass, center of mass,
and rotational inertia of each body, plus the quantities P and s
to define the joint axis. A further two quantities are needed to
describe the forces acting on B1, and a further two to describe
its resulting acceleration. Furthermore, it is not enough merely
to state that f , n, a1, and _x1describe the forces and accelera-
tions—a complete description requires that we also identify
the line of action of f and the particular point in B1 to which
a1 refers. Having introduced the three points C1, C2, and P as
a necessary part of describing the problem, it becomes desira-
ble to show these points on the diagram, as they will play a
major role in the solution process.

In the terminology of the 3-D-vector approach, f , n, a1, and
_x1 are said to be referred to (or expressed at) C1, meaning that C1

serves as the reference point for these quantities. Equations (S1) and
(S2) are likewise referred to (expressed at) C1. This need to define
various points in space, and to refer various vectors and equations to
these points, is a characteristic feature of the 3-D-vector approach
to solving a rigid-body problem. It accounts for a large part of the
algebraic complexity, and it forces the analyst to think explicitly in
terms of which point will be used to express which equation and
which quantities will have to be transferred from one reference
point to another. A poor choice of reference points can render a
complicated solution procedure even more complicated.

In the 3-D example, we can see that the equations of
motion of each body have been expressed at their respective
centers of mass, and that the equations of constraint (S14)–
(S16) have been expressed at P. These are good choices, but
they require us to define an extra eight quantities (Pa1 to 1n2)
and an extra seven equations (S5)–(S11) to manage all the nec-
essary transfers of vectors from one reference point to another.

At the highest level, the solution strategy is this: express the
acceleration of B2 in terms of a1, _x1, and a, and then use the
force-constraint equation (S16) to obtain an expression for a
in terms of a1 and _x1. At this point, every force and accelera-
tion in the system can be expressed in terms of a1 and _x1; so,
the solution is obtained by expressing f and n in terms of a1

and _x1, and then inverting the equations to express the acceler-
ations in terms of the forces.

Let us now examine the spatial-vector example. In this case,
only three quantities (I1, I2, and s) are required to describe the
rigid-body system; only one quantity ( f ) is required to
describe the forces acting on B1; and only one quantity (a1) is
required to describe its acceleration. Furthermore, the solution
procedure introduces only another three quantities (a2, f J, and
a). So, the whole problem now involves only eight quantities.

Observe that there is no mention of any 3-D point any-
where in this example. The problem has been stated and
solved without reference to any point in space. This absence
of reference points is a characteristic feature of the spatial-vec-
tor approach (and some other 6-D formalisms) and is a key
aspect of thinking in 6-D.

Referring back to the 3-D example, it is clearly possible to
pair up corresponding 3-D vectors ( f with n, a1 with _x1, and
so on) to make 6-D vectors, and this would result in some reduc-
tion in the volume of algebra. However, the points C1, C2, and
P would still be an essential part of the problem statement and
the solution process. Thus, the stacking of pairs of 3-D vectors is
purely a notational device: the resulting vectors are 6-D, but the
concepts, methods, and thought processes are all still 3-D.

Returning to the spatial-vector example, the diagram is
clearly simpler, but the arrows now have different meanings.
The arrow associated with f , which points from empty space
to B1, indicates only that f is an external force acting on B1. It
does not convey any geometrical information (such as the line
of action of a force). Likewise, the arrow associated with f J,
which points from B1 to B2, indicates only that f J is a force
transmitted from B1 to B2, whereas the arrow associated with
a1, which points out of B1, indicates only that a1 is the acceler-
ation of B1. From the directions of the arrows (and knowledge
of spatial vectors), we can immediately deduce that the net
force on B1 is f � f J and the net force on B2 is f J. The arrow
associated with s, which is aligned with the joint’s rotation
axis, is the only one with any geometrical significance.

The reason why there are no 3-D points in the spatial-vec-
tor example and why most of the arrows have no geometrical
significance is because all the necessary positional information
is intrinsic to the relevant spatial quantities. The inertias I1 and
I2 implicitly locate the centers of mass of the two bodies; the
line of action of f (if it has one) can be deduced from its value;
and s defines both the direction and the location of an axis of
rotation in 3-D space. Acceleration is a little more complicated
and will be discussed in a later section. Nevertheless, a1 does
provide a complete description of a body’s acceleration and
does not need to be referred to any point.

The high-level solution strategy in the spatial-vector exam-
ple is the same as that in the 3-D example: express a2 in terms
of a1 and a; then, substitute into the force-constraint equation
(S36) to obtain an expression for a in terms of a1; then, express
f in terms of a1 and invert to express a1 in terms of f . Using
spatial vectors, the analyst is able to follow this high-level strategy
directly, without having to think about the messy details associ-
ated with the 3-D-vector approach. Observe how the expres-
sion for a is obtained almost immediately, after just two simple
substitutions, and the desired expression for f is obtained after
just three more simple substitutions.

Another benefit of spatial vectors, which is not evident
from this example, is that it is quite easy to prove that the
expression in parentheses in (S39) is a symmetric, positive-def-
inite matrix, and therefore invertible. The same is also true of
the 6 3 6 matrix in (S27) of the 3-D example, but the proof
(using 3-D vectors) is relatively complicated. Yet another
advantage of spatial vectors is that a person who is new to the
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example problem is likely to get the correct answer quickly
using spatial vectors but is likely to get lost and take wrong
turns while trying to solve it using 3-D vectors.

Some Formalities
To understand spatial vectors, it helps to review a few basic
facts about vectors. First, there are many different types of vec-
tor, each having different mathematical properties. In fact, there
are only two operations that are defined on all vectors: the
addition of two vectors and the multiplication of a vector by a
scalar (i.e., a real number). There are several more operators
that are defined on particular types of vector and give them
special properties. One important example is the Euclidean
inner product, which is defined only on Euclidean vectors, and
gives them the special properties of magnitude and direction.

Two types of vector are of special interest: Euclidean and
coordinate vectors. Euclidean vectors have the special properties
of magnitude and direction, and they are the elements of a
Euclidean vector space, which we shall denote with the symbol
En. (The superscript indicates the dimension.) Coordinate vec-
tors are n-tuples of real numbers, and they are elements of the
vector space Rn. The special property of coordinate vectors is
that they have a first coordinate, a second coordinate, and so on.

Coordinate vectors are used to represent other kinds of
vector via a basis. For example, if V is a general vector space
and E ¼ fe1, e2, . . . , eng � V is a basis on V , then any vector
v 2 V can be expressed in the form v ¼

Pn
i¼1 viei, where vi

are the coordinates of v in E. If we assemble them into a coor-
dinate vector v ¼ ½v1 v2 � � � vn�T, then we can say that v 2 Rn

represents v 2 V in the basis E � V .
Some bases are more useful than others. For Euclidean vec-

tors, the most useful is an orthonormal basis, which gives rise
to a Cartesian coordinate system. The special property of Car-
tesian coordinates is this: if v1 and v2 are coordinate vectors
representing the Euclidean vectors v1 and v2 in a Cartesian
coordinate system, then v1 � v2 ¼ vT

1 v2.
Spatial vectors are not Euclidean. They are the elements of

two closely related vector spaces called M6 and F6. The former
contains motion vectors, which describe the motions of rigid
bodies, and the latter contains force vectors, which describe
forces acting on rigid bodies. Formally, F6 is the dual vector
space of M6 and vice versa. This notation can be extended to
encompass other kinds of motion and force vector. For exam-
ple, a generalized force vector could be described as an ele-
ment of Fn, and a vector describing the motion of a set of N
rigid bodies could be said to be an element of M6N .

There is no inner product defined on spatial vectors.
Instead, there is a scalar product that takes one argument from
each space. If m 2 M6 and f 2 F6, then the expressions m � f
and f �m are defined (and are equal), but the expressions
m �m and f � f are not. As we shall see later, if m is the velocity
of a rigid body and f is the force acting on it, then f �m is the
power delivered by f .

A coordinate system for spatial vectors must span both
M6 and F6. Thus, a total of 12 basis vectors are required:
fd1, d2, . . . , d6g � M6 and fe1, e2, . . . , e6g � F6. Again, some
bases are more useful than others. For spatial vectors, the most

useful is a dual basis, which defines a dual coordinate system
on M6 and F6. To qualify as a dual basis, the vectors di and ei

must satisfy the following condition:

di � ej ¼
1 if i ¼ j
0 otherwise:

�
(1)

The special property of a dual coordinate system is this: if m and f
are coordinate vectors representing m 2 M6 and f 2 F6 in a dual
coordinate system, then m � f ¼ mTf . Thus, dual coordinates are
the spatial-vector equivalent of a Cartesian coordinate system on a
Euclidean vector space. The Pl€ucker coordinates that we shall
meet later on are a special type of dual coordinate system having
extra properties that make them especially convenient to use.
A general property of dual coordinate systems is that motion
and force vectors obey different coordinate-transformation
rules. If X is a coordinate transform for motion vectors, then
the corresponding transform for force vectors is called X�, and
the two are related by

X� ¼ (X�1)T ¼ X�T: (2)

This relationship ensures that the scalar product is invari-
ant with respect to any coordinate transformation, as can be
seen from

(X�f )T(Xm) ¼ f TX�1Xm ¼ f Tm: (3)

What Is a Spatial Vector?
Let P be a particle in 3-D space. If we say that P has a velocity
of v, then we mean that v is a Euclidean vector (v 2 E3) whose
magnitude and direction match the speed and direction of
travel of P. Now suppose B is a rigid body. If we are told that
B has a velocity of v̂, then we can immediately infer that
v̂ 2 M6; but how exactly does v̂ describe the motion of B, and
how is it possible for v̂ to describe the motion without using a
reference point? An intuitive answer to these questions is pro-
vided by screw theory.

The most general motion of a rigid body, at any given instant,
is a screwing motion along a directed line. (The body is behaving
like a nut on a screw thread fixed somewhere in space.) In screw
theory, such a motion is called a twist. A twist can be character-
ized by an angular magnitude, a linear magnitude, and a directed
line. (The ratio of the two magnitudes is called the pitch.) These
three quantities together define a twist, just as a magnitude and a
direction together define a particle velocity. The two magni-
tudes describe the rate at which the body is rotating about and
translating along the directed line, and the line itself describes the
instantaneous screw axis of the motion. (As the name suggests, a
rigid body will, in general, be screwing about two different axes
at two different instants. Over a finite time interval, a body will
have screwed about an infinity of axes, each one fixed in space
and each one valid for a single instant.) If the linear magnitude is
zero, then the motion is a pure rotation. If the angular magnitude
is zero, then the motion is a pure translation, in which case the
location of the line is irrelevant and only its direction matters.

IEEE Robotics & Automation Magazine88 SEPTEMBER 2010



We can now answer the question posed earlier. The ele-
ments of M6 are twists and are characterized by two magni-
tudes and a directed line. If we say that v̂ 2 M6 is the velocity
of B, then we mean that the directed line and the linear and
angular magnitudes of v̂ match the instantaneous screw axis of
the body’s motion and its linear and angular rates of progres-
sion along and about that axis.

Spatial force vectors can be explained in a similar manner.
The most general force acting on a rigid body consists of a
screwing force acting along a directed line: a linear force act-
ing along the line, together with a turning force (a couple)
acting about the line. In screw theory, such a quantity is called
a wrench. A wrench can be characterized by a linear magni-
tude, an angular magnitude, and a directed line—exactly the
same as a twist. The two magnitudes describe the intensities
of the linear and angular components of the wrench, and the
directed line is the instantaneous screw axis. If the angular
magnitude is zero, then the wrench is a pure force. If the lin-
ear magnitude is zero, then the wrench is a pure couple, in
which case the location of the line is irrelevant and only its
direction matters.

If the elements of F6 are forces acting on rigid bodies, then
they are wrenches, and they are characterized by two magni-
tudes and a directed line. If we say that a force f̂ 2 F6 is acting
on body B, then we mean that the directed line and the linear
and angular magnitudes of f̂ match the instantaneous screw
axis and the linear and angular intensities of the wrench acting
on body B.

If we introduce a reference point O, then it becomes possi-
ble to represent a spatial velocity v̂ by means of a pair of 3-D
vectors x and vO, and to represent a spatial force f̂ by means of
a pair of 3-D vectors f and nO. Having explained the nature
of rigid-body motion and force by means of twists and
wrenches, it should now be clear that reference points are not
an intrinsic necessity but merely an artifact of the 3-D-vector
representation. In other words, you only need reference points
if you are using 3-D vectors. Choosing a reference point is like
choosing a coordinate system in which a spatial vector is to be
represented by a pair of vector-valued coordinates. (This idea
is explored in [6].)

Having obtained x and vO, there are two ways to view the
velocity they describe. According to one view, the body is rotat-
ing with an angular velocity of x about an axis passing through
O while simultaneously translating with a linear velocity of vO.
According to the other view, x defines the angular magnitude
of the twist velocity and the direction of the instantaneous screw
axis, while vO (in combination with x) defines the linear magni-
tude of the twist velocity and the location of the instantaneous
screw axis relative to O. Both views are correct and useful. Simi-
lar comments apply to forces.

Using Spatial Vectors
Spatial vectors are a tool for expressing and analyzing the
physical properties and behavior of rigid-body systems. The
vectors describe physical quantities, and the equations describe
relationships between them. So what do the rules of classical
mechanics look like in spatial-vector form? Here is a short list

of basic facts and formulae. It mentions some quantities that
we have not yet met, but will be described in the next section.

u Relative velocity: If bodies B1 and B2 have velocities of v1

and v2, respectively, then the relative velocity of B2 with
respect to B1 is vrel ¼ v2 � v1. Obviously, this also
means that v2 ¼ v1 þ vrel.

u Summation of forces: If forces f 1 and f 2 act on the same
rigid body, then they are equivalent to a single force,
f tot, given by f tot ¼ f 1 þ f 2.

u Action and reaction: If body B1 exerts a force f on body
B2, then B2 exerts a force �f on B1. This is Newton’s
third law in spatial form.

u Scalar product: If a force f acts on a body having a velocity
of v, then the power delivered by that force is f � v.

u Scalar multiplication: This operation affects a spatial vec-
tor’s magnitudes but not its directed line. If a spatial vec-
tor s is characterized by magnitudes m1 and m2 and line
l, then a s is characterized by am1, am2, and l. A body
having a velocity of a v makes the same infinitesimal
motion over a period of dt as a body with a velocity of
v makes over a period of adt; and a force b f delivers
b times as much power as a force f acting on the same
body. So, (a v) � (b f ) ¼ a b (v � f ).

u Differentiation: Spatial vectors are differentiated just like
any other vector. The derivative of a motion vector is a
motion vector, and the derivative of a force vector is a
force vector. If m 2 M6 and f 2 F6 are fixed in a body
having a velocity of v, then _m ¼ v 3 m and _f ¼ v 3�f .
[The operator 3� is defined in (18).]

u Acceleration: Spatial acceleration is the time derivative of
spatial velocity (a ¼ _v). For example, if v2 ¼ v1 þ vrel,
then a2 ¼ a1 þ arel. Spatial accelerations are elements of
M6 and therefore obey the same coordinate-transforma-
tion rule as velocities.

u Summation of inertias: If bodies B1 and B2, having inertias
of I1 and I2, respectively, are rigidly connected to form
a single composite rigid body, then the inertia of the
composite is I tot ¼ I1 þ I2.

u Momentum: If a rigid body has a velocity of v and an iner-
tia of I, then its momentum is Iv.

u Equation of motion: The total force acting on a rigid
body equals its rate of change of momentum. f ¼
d(Iv)=dt ¼ Iaþ v 3�Iv.

u Motion constraints: If the relative velocity of two rigid
bodies is constrained to lie in a subspace S � M6, then
the motion constraint is implemented by a constraint
force lying in the subspace T ¼ f f 2 F6 j f � v ¼ 0
8 v 2 Sg. This is a statement of D’Alembert’s principle
of virtual work (or Jourdain’s principle of virtual power)
expressed using spatial vectors.

Details
This section covers the practical details of coordinate systems, differ-
entiation, inertia, the equation of motion, and motion constraints.
By the end of this section, you should be able to understand the
spatial-vector example clearly enough to be able to generalize it to
the case where B1 and B2 have nonzero velocities.
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Pl€ucker Coordinates
Pl€ucker coordinates (pronounced plooker) are the coordinate
systems of choice for 6-D vectors. To set up a Pl€ucker coordi-
nate system, all that is needed is a Cartesian coordinate frame
Oxyz placed anywhere. The position and orientation of this
frame defines a Pl€ucker coordinate system. In fact, there is a
1:1 correspondence between the set of all positions and orien-
tations of a Cartesian frame and the set of all possible Pl€ucker
coordinate systems.

The frame Oxyz defines the following items: a point O,
three mutually orthogonal directions x, y, and z, and three
directed lines Ox, Oy, and Oz. (They pass through O in the x,
y, and z directions.) With this data, we can define three bases
as follows:

C ¼ fi, j, kg � E3, (4)

D ¼ fdOx, dOy, dOz, dx, dy, dzg � M6, (5)

and

E ¼ fex, ey, ez, eOx, eOy, eOzg � F6: (6)

The elements of C are unit Euclidean vectors in the x, y,
and z directions, and this basis defines a Cartesian coordinate
system on E3. The elements of D and E are as follows: dOx,
dOy, and dOz are unit pure rotations about the lines Ox, Oy,
and Oz, respectively; dx, dy, and dz are unit pure translations
in the x, y, and z directions, respectively; eOx, eOy, and eOz are
unit pure forces acting along the lines Ox, Oy, and Oz, respec-
tively; and ex, ey, and ez are unit pure couples in the x, y, and z
directions. These vectors are illustrated in Figure 1. The bases
D and E together define a Pl€ucker coordinate system on
M6 and F6.

Now that we have the bases, let us work out the Pl€ucker
coordinates of a spatial velocity v̂ 2 M6 and a spatial force
f̂ 2 F6. Starting with v̂, the first step is to identify the two 3-D
vectors, x and vO, that represent v̂ at reference point O. Once
this has been done, the motion of the body can be regarded as
the sum of a pure rotation of x about O (i.e., the axis of rota-
tion passes through O) and a pure translation of vO. The next
step is to express these vectors in basis C:

x ¼ xxiþ xy j þ xzk,

and

vO ¼ vOxiþ vOy j þ vOzk:

We can now describe the spatial velocity v̂ as the sum of six
components: three rotations of magnitudes xx, xy, and xz

about the lines Ox, Oy, and Oz, respectively, plus three trans-
lations of magnitudes vOx, vOy, and vOz in the x, y, and z direc-
tions. On comparing this description with the definitions of
the basis vectors inD, it follows immediately that

v̂¼xxdOxþxydOyþxzdOzþ vOxdxþ vOydyþ vOzdz: (7)

Applying the same procedure to f̂ , we identify f and nO

as the 3-D vectors representing f̂ at O and express them in
basis C:

f ¼ fxiþ fy j þ fzk,

and

nO ¼ nOxiþ nOy j þ nOzk:

The force f̂ can then be described as the sum of six compo-
nents: pure forces of magnitudes fx, fy, and fz acting along the
lines Ox, Oy, and Oz, respectively, and pure couples of mag-
nitudes nOx, nOy, and nOz in the x, y, and z directions. On
comparing this description with the definitions of the basis
vectors in E, it follows immediately that

f̂ ¼ nOxex þ nOyey þ nOzez þ fxeOx þ fyeOy þ fzeOz: (8)

So, the Pl€ucker coordinates of v̂ and f̂ are none other than
the Cartesian coordinates in C of the vectors x, vO, f , and nO.
If v̂ and f̂ are the coordinate vectors representing v̂ and f̂ , then
we can write them in full as

v̂ ¼

xx

xy

xz

vOx

vOy

vOz

2
6666664

3
7777775, f̂ ¼

nOx

nOy

nOz

fx
fy
fz

2
6666664

3
7777775, (9)

or we can write them in short form as

v̂ ¼ x

vO

� �
, f̂ ¼ nO

f

� �
, (10)

where x ¼ ½xx xy xz�T, etc. This short format is very convenient
and popular, but it does have one small drawback: it looks like a
stacked pair of 3-D vectors and is therefore capable of misleading
readers into thinking that a spatial vector is a stacked pair of 3-D vec-
tors; but in reality, it is only the coordinates that are being stacked.
Equation (10) is nothing more nor less than a shorthand for (9).

Equations (9) and (10) list the angular coordinates above the
linear ones. This order is not essential, and you will find

dOx dOy

dOz

dx

dz

O

dy

eOx eOy

eOz

ex

ez

O
ey

Motion Force

Figure 1. Pl€ucker basis vectors.
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examples in the literature where the linear coordinates precede
the angular ones. From a mathematical point of view, the differ-
ence is purely cosmetic: it is simply a consequence of the order in
which we have chosen to list the basis vectors inD and E. How-
ever, if you want to use spatial arithmetic software, then you will
have to comply with the order expected by the software.

The pattern of coordinate names appearing in (9) and (10) is
not the general case because we have used some special symbols. In
particular, we used the standard symbol x for angular velocity and
the (not quite so) standard symbol n for moment. In the general
case, the coordinates’ names are derived from the name of the vec-
tor they describe. For a generic motion vector m̂, the coordinates
would be called mx, my, mz, mOx, mOy, and mOz. Of course, you
could also number the coordinates (and basis vectors) if you prefer.

Pl€ucker Transforms
Let A and B be two Cartesian frames defining two Pl€ucker
coordinate systems, which we shall also call A and B. Let
Am, Bm, Af , Bf 2 R6 be coordinate vectors representing m 2 M6

and f 2 F6 in A and B coordinates, respectively. The coordinate
transformation rules for these vectors are as follows:

Bm ¼ BXA
Am,

and

Bf ¼ BX�A
Af ,

where BXA is the coordinate transformation matrix from A to
B coordinates for motion vectors, and BX�A is the correspond-
ing matrix for force vectors. The two are related by

BX�A ¼ (BXA)�T,

[cf. (2)]. The formulae for BXA and BX�A depend only on the
location of B relative to A and are given by

BXA ¼
E 0
0 E

� �
1 0
�r 3 1

� �
, (11)

and

BX�A ¼
E 0
0 E

� �
1 �r 3

0 1

� �
: (12)

In these equations, E is the coordinate transform from CA

to CB (the Cartesian coordinate systems defined by frames A
and B), and r locates the origin of frame B in CA coordinates
(see Figure 2).

The symbols 0 and 1 denote zero and identity matrices of
appropriate dimensions, and the expression r 3 is the skew-
symmetric matrix

r 3 ¼
rx
ry
rz

2
4

3
53 ¼

0 �rz ry
rz 0 �rx
�ry rx 0

2
4

3
5, (13)

which maps any Euclidean vector v to the vector product
r 3 v . (It is the same idea as the matrix ~u that we encountered
in the 3-D example.)

Differentiation
Spatial vectors are differentiated in the same way as any other
vector, namely

d

dx
s(x) ¼ lim

dx!0

s(xþ dx)� s(x)

dx
: (14)

The derivative of a motion vector is a motion vector, and the
derivative of a force vector is a force vector. Unfortunately,
the situation gets a little more complicated when we come to
coordinate vectors because of the need to distinguish between
the derivative of a coordinate vector and the coordinate vector
representing a derivative.

To clarify this distinction, let m 2 M6 be a motion vector,
and let Am 2 R6 be a coordinate vector representing m in A
coordinates. We can now identify the following quantities:

u dm=dx: the derivative of m
u

A(dm=dx): the vector representing dm=dx in A coordinates
u dAm=dx: the derivative of the coordinate vector Am.

The derivative of a coordinate vector is always its component-
wise derivative. If the basis vectors do not vary with x, then we
have A(dm=dx) ¼ dAm=dx (and similarly for forces); other-
wise, these quantities will differ by a term depending on the
derivatives of the basis vectors.

For the special case of a time derivative in a moving Pl€ucker
coordinate system, we have the following formulae:

A dm

dt

� �
¼ d

dt
Amþ AvA 3

Am, (15)

and

A df

dt

� �
¼ d

dt
Af þ AvA 3

� Af : (16)

In these equations, A is both the name of a Pl€ucker coordinate
system and the name of the frame that defines it, while AvA is
the velocity of frame A expressed in A coordinates. These
equations introduce two new operators, 3 and 3�, which
are the spatial-vector equivalents of the cross-product operator

r

A

E

B

Figure 2. Location of frame B relative to A.
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for 3-D Euclidean vectors appearing in (13). They are defined
(in Pl€ucker coordinates) as follows:

v̂ 3 ¼ x

vO

� �
3 ¼ x 3 0

vO 3 x 3

� �
, (17)

and

v̂ 3
� ¼ x

vO

� �
3
� ¼ x 3 vO 3

0 x 3

� �
¼ �v̂ 3

T: (18)

These operators share many properties with their 3-D
counterpart, which can be deduced from their definitions;
e.g., v̂ 3 v̂ ¼ 0. The reason why there are two operators is
because one (v̂ 3) arises from the motion of the motion basis
vectors, while the other (v̂ 3�) arises from the motion of the
force basis vectors. The operator v̂ 3 acts on a motion vector,
producing a motion-vector result, and the operator v̂ 3� acts
on a force vector, producing a force-vector result.

A useful corollary of (15) and (16) is that if m and f are fixed
in a body B and are varying only because B is in motion, then

_m ¼ v 3 m, (19)

and
_f ¼ v 3

�f , (20)

where v is the velocity of B. A similar formula for rigid-body
inertia appears in (27). If s 2 M6 denotes a revolute or prismatic
joint axis that is fixed in body B, then _s ¼ v 3 s.

Acceleration
Spatial acceleration is just the time derivative of spatial veloc-
ity. However, that seemingly innocuous definition contains a
surprise, as we shall now discover. Let O be a fixed point in
space, and let B be a rigid body whose spatial velocity is given
by x and vO at O. Let O0 be a body-fixed point that happens
to coincide with O at the current instant (time t), and let

r ¼ OO0
��!

. Thus, r ¼ 0 at time t, but r 6¼ 0 in general. As O is
stationary, the velocity and acceleration of O0 are given by

vO 0 ¼ _r,

and

_vO 0 ¼ €r:

Now, the relationship between vO and vO0 is

vO ¼ vO 0 � x 3 r,

so,

_vO ¼ _vO 0 � _x 3 r � x 3 _r:

Therefore, at the current instant (where r ¼ 0), we have

vO 0 ¼ _r, vO ¼ _r,
_vO 0 ¼ €r, _vO ¼ €r � x 3 _r:

(21)

The formula for spatial acceleration is therefore

â ¼ d

dt
v̂ ¼ d

dt
x

vO

� �
¼ _x

€r � x 3 _r

� �
: (22)

We can explain this in words as follows. _r is the velocity of a
particular body-fixed particle, but vO is the velocity measured
at O of the stream of body-fixed particles passing through O.
Likewise, €r is the acceleration of a particular body-fixed parti-
cle, but _vO is the rate of change in the velocity at which succes-
sive body-fixed particles stream through O.

Despite the slightly greater complexity of (22) compared
with the classical description of rigid-body acceleration using
_x and €r, spatial acceleration is significantly easier to use. For

example, spatial accelerations can be summed like velocities,
and they obey the same coordinate-transformation rule. To
take another example, if two bodies B1 and B2 are connected
by a joint such that the two velocities obey

v2 ¼ v1 þ s _q,

where s describes the joint axis and _q is a joint velocity variable,
then the relationship between their accelerations is obtained
immediately by differentiating the velocity equation:

a2 ¼ a1 þ _s _qþ s€q:

If s describes a joint axis that is fixed in B2, then _s ¼ v2 3 s, which
implies that _s _q ¼ v1 3 v2. (Can you prove this?) The equivalent
3-D-vector equations are significantly more complicated. For
more on the topic of spatial acceleration see, [5] and [7].

Inertia
The spatial inertia of a rigid body is a tensor that maps its veloc-
ity to its momentum (which is a force vector). If a body has an
inertia of I and a velocity of v, then its momentum, h 2 F6, is

h ¼ Iv: (23)

If rigid bodies B1 � � �BN are rigidly connected together to
form a single composite rigid body, then the inertia of the
composite is

I tot ¼
XN
i¼1

I i, (24)

where I i is the inertia of Bi.
Expressed in any dual coordinate system, spatial inertia is a

symmetric, positive-definite matrix (or, in special circumstances,

If a rigid body has a velocity of v
and an inertia of I, then its
momentum is Iv.
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positive semidefinite). Expressed in Pl€ucker coordinates, the
spatial inertia of a rigid body is

I ¼
�Ic þ m c 3 c 3 T m c3

m c 3 T m 1

� �
, (25)

where m is the body’s mass, c is a 3-D vector locating the
body’s center of mass, and �Ic is the body’s rotational inertia
about its center of mass. Observe that a rigid-body inertia is a
function of ten parameters: one in m, three in c, and six in �Ic .
More general kinds of spatial inertia, such as articulated-body
and operational-space inertia, do not have the special form
shown in (25), and they can be functions of up to 21 inde-
pendent parameters.

All spatial inertias, whether rigid or not, obey the following
coordinate-transformation rule:

BI ¼ BX�A
AI AXB: (26)

This formula is valid for any dual coordinate system, not only
Pl€ucker coordinates. If a rigid body has a velocity of v and an
inertia of I, then the time derivative of its inertia is

d

dt
I ¼ v 3

�I � Iv 3 : (27)

Another useful equation is

E ¼ 1

2
v � Iv, (28)

which gives the kinetic energy of a rigid body.

Equation of Motion
Expressed in spatial form, the equation of motion for a rigid
body having a velocity of v and an inertia of I is

f ¼ d

dt
(Iv) ¼ Iaþ v 3

�Iv, (29)

where f is the total force acting on the body, and a is the
resulting acceleration. [Can you verify this equation using (27)?]
In words, it says that the total force acting on a rigid body
equals its rate of change of momentum. This equation incor-
porates both Newton’s equation applied to the center of mass
and Euler’s equation for the rotation of the body about its cen-
ter of mass.

It is often useful to write the equation of motion in the fol-
lowing simplified form:

f ¼ Iaþ p, (30)

where p 2 F6 is called a bias force. There are two main reasons
why you might want to do this. First, the algebraic form of this
equation is identical to the algebraic form of several other
important equations of motion, such as the articulated-body
equation of motion and the equation of motion of a rigid body

expressed in generalized coordinates. Second, it offers the
opportunity to split f into a known part and an unknown part,
and incorporate the former into p. For example, if the forces
acting on the body consisted of an unknown force and a gravi-
tational force, you could define f in (30) to be the unknown
force and define p as follows:

p ¼ v 3
�Iv � fg,

where fg is the gravitational force. Incidentally, if ag is the
acceleration due to gravity (in a uniform gravitational field),
then the force of gravity acting on a rigid body with inertia I is

fg ¼ Iag:

Motion Constraints
In the simplest case, a motion constraint between two rigid
bodies, B1 and B2, restricts their relative velocity to a vector
subspace S � M6, which can vary with time. If r is the dimen-
sion of S, then the constraint allows r degrees of relative
motion freedom between the two bodies, and consequently
imposes 6� r constraints. If s1 � � � sr are any set of vectors that
span S (i.e., they form a basis on S), then the relative velocity
can be expressed in the form

vrel ¼ v2 � v1 ¼
Xr

i¼1

si _qi,

where _qi are a set of velocity variables. However, we usually
collect the vectors together into a single 6 3 r matrix S, and
express the relative velocity as follows:

v2 � v1 ¼ S _q, (31)

where _q is an r-dimensional coordinate vector containing the
velocity variables. To obtain a constraint on the relative accel-
eration, we simply differentiate this equation, giving

a2 � a1 ¼ _S _qþ S€q: (32)

In a typical dynamics problem, the quantities _S, _q, and S would
all be known, and €q would be unknown. Expressions for S and
_S will depend on the type of constraint. If the component
vectors of S are fixed in body i (i ¼ 1 or 2), then _S ¼ vi 3 S.

Motion constraints are implemented by constraint forces,
and constraint forces all have the following special property: a
constraint force does no work in any direction of motion per-
mitted by the constraint.

This is simply a statement of D’Alembert’s principle of virtual
work, or Jourdain’s principle of virtual power, depending on

A constraint force does no work
in any direction of motion permitted

by the constraint.
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whether you interpret motion to mean infinitesimal displace-
ment or velocity.

Let fc be the constraint force implementing the above
motion constraint. As the relative motion has been defined to
be the motion of B2 relative to B1, so we must define fc to be a
force transmitted from B1 to B2 (i.e., fc acts on B2 and �fc acts
on B1). To comply with D’Alembert’s principle, fc must satisfy
fc � si ¼ 0 for all i. Therefore, fc must satisfy

STfc ¼ 0: (33)

Equations (32) and (33) together define the motion constraint
between B2 and B1. To model a powered joint, we replace
(33) with

STf J ¼ s, (34)

where f J is the total force transmitted across the joint—the
sum of an active force and a constraint force—and s is a vector
of generalized force variables. The elements of s must be defined
such that sT _q is the instantaneous power delivered by the joint
to the system.

Further Reading
Spatial vectors are described in detail in [7] and in somewhat
less detail in [8]. An older version of spatial vectors is de-
scribed in [4]. Web-based materials are available from [9],
including a slide show, a set of exercises with answers, the
two examples appearing at the beginning of this tutorial, and
software for MATLAB and Octave that implements spatial
vector arithmetic and a selection of the most important
dynamics algorithms for robotics. Similar materials, plus a lot
of materials from other authors on screw theory, are avail-
able at [17].

Spatial vectors are closely related to screw theory, to motor
algebra, and the Lie algebra se(3). Materials on these topics can
be found in [1]–[3], [10]–[12], and [15], [16]. Screw theory
emphasizes geometrical aspects of 6-D vectors, expressed in
terms of straight lines, pitches (of screws), and magnitudes.
Lie algebra takes a more formal approach: se(3) is the tangent
space at the identity of the Lie group se(3); so you can expect
notions of group theory, manifolds, and tangent spaces to
appear. Motor algebra has two forms: one based on real num-
bers [2], [10], [11] and the other on dual numbers [3]. The
latter is not suitable for dynamics because dual numbers don’t
work with inertias.

One more notation that deserves a mention is the spatial
operator algebra of [13], [14]. This notation shows obvious
signs of 3-D-vector thinking, but its most important feature is
the way the authors have stacked up the 6-D vectors to make
6N-dimensional vectors and 6N 3 6N matrices that describe
properties of a whole rigid-body system comprising N bodies.

This concludes part 1 of this tutorial. Part 2 will show how
spatial vectors are applied to several standard problems in robot
kinematics and dynamics. In particular, it will show how a prob-
lem can be solved algebraically using spatial vectors, and the

resulting solution translated directly into short, simple computer
code for performing the desired calculations.

Keywords
Robot dynamics, spatial vectors, rigid body dynamics, Pl€ucker
coordinates, screw theory.
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A Beginner’s Guide
to 6-D Vectors (Part 2)

From Equations to Software

BY ROY FEATHERSTONE

S
patial vectors are six-dimensional (6-D) vectors that
describe the motions of rigid bodies and the forces
acting upon them. In Part 1, we saw how spatial vec-
tors can simplify the process of expressing and ana-
lyzing the dynamics of a simple rigid-body system.

In this tutorial, we shall examine the application of spatial vec-
tors to various problems in robot kinematics and dynamics. To
demonstrate that spatial vectors are both a tool for analysis and
a tool for computation, we shall consider both the mathemati-
cal solution of a problem and the computer code to calculate
the answer.

To illustrate the power of spatial vectors, we shall con-
sider the class of robots having branched connectivity.
This class includes legged robots, humanoids and multifin-
gered grippers, as well as traditional serial robot arms;
however, it does not include robots with kinematic loops,
such as parallel robots. To cope with this degree of generality,
we shall take a model-based approach: the robot mecha-
nism is described by means of a standard set of quantities
stored in a model data structure, and the equations, algo-
rithms, and computer code are designed to use those quan-
tities in their calculations.

Following the same pattern as Part 1, this tutorial starts
with a specific example and proceeds to analyze it in detail;
the example in this instance being the computer code to
implement a model-based inverse dynamics calculation using
the recursive Newton–Euler algorithm. Subsequent sections

then examine a variety of topics in kinematics and present
the two main recursive algorithms for forward dynamics:
the composite-rigid-body algorithm and the articulated-
body algorithm.

It is assumed that the readers have already read Part 1 [6], or
equivalent material, and therefore, they are familiar with the
notation and basic concepts of spatial vector algebra.

A Computational Example
Inverse dynamics is the problem of calculating the forces
required to produce a given acceleration. It is a relatively
easy problem, and therefore, a good place to start. A model-
based inverse dynamics calculation can be expressed mathe-
matically as

s ¼ ID(model, q, _q, €q), (1)

where q, _q, €q, and s denote vectors of joint position, velocity,
acceleration, and force variables, respectively, and model
denotes a data structure containing a description of the robot.
The objective is to calculate the numeric value of ID given the
numeric values of its arguments.

Figure 1 shows the MATLAB source code for an imple-
mentation of (1) using the recursive Newton–Euler algorithm.
This is a complete implementation: you could type it in right
now (minus the line numbers) and get it to work, provided
you also typed in the (very short) definitions of the functions
jcalc, crm, and crf, which are discussed later in this tuto-
rial. The code in Figure 1 can calculate the inverse dynamics ofDigital Object Identifier 10.1109/MRA.2010.939560
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any robot mechanism in which the bodies are
connected together in the manner of a topo-
logical tree, and each joint is either revolute,
prismatic, or helical (a screw joint).

The code is clearly very short. This
degree of brevity would not be possible
using three-dimensional (3-D) vectors.
Once the basics of spatial vectors are under-
stood, code like this requires relatively little
effort to write, test, and debug compared
with the equivalent 3-D-vector code. Fur-
thermore, code like this is relatively easy for
others to read, understand, and adapt to other
purposes.

Model Data Structure
Before we study the code in detail, let us first
examine the contents of the model data
structure. This structure contains the follow-
ing fields:

u model.N: an integer specifying the
number of bodies in the mechanism

u model.parent: an array of integers,
called the parent array, describing the
connectivity of the mechanism

u model.Xtree: an array of Pl€ucker
coordinate transforms describing the relative loca-
tions of the joints within each body

u model.pitch: an array of floating point numbers
describing the pitch (and therefore, the type) of
each joint

u model.I: an array of spatial inertias giving the inertia
of each body expressed in link coordinates.

This data is sufficient to describe a general kinematic tree
in which the joints are revolute, prismatic, or helical. The
term “kinematic tree” simply means a rigid-body system in
which the connectivity is that of a topological tree. It is
derived from the older term “kinematic chain.” The small set
of joint types is not quite as limiting as it appears, because many
common joint types can be emulated by a chain of revolute
and prismatic joints connected together by massless bodies.
For example, a spherical joint can be emulated by a chain of
three revolute joints with axes passing through the rotation cen-
ter of the spherical joint. This works so long as the chain does
not enter a kinematic singularity.

At this point, you might be wondering why helical joints
have been included. The short answer is to demonstrate how
easy it is, when using spatial vectors, to go beyond the basic
repertoire of revolute and prismatic joints. A longer answer is
that helical joints are more general than revolute or prismatic
ones, so their inclusion represents a genuine increase in
generality. Also, helical joints are an example of a joint type
that requires a parameter (the pitch of the helix), so their
inclusion provides an opportunity to include joint parameters
in a robot model.

The next three subsections explain how the fields in the
model data structure are used to model a robot mechanism,

and then, we shall return to the code in Figure 1 and the algo-
rithm it implements.

Connectivity
The connectivity of a robot mechanism can be represented
by a connectivity graph, which is an undirected graph in
which the nodes represent bodies and the arcs represent
joints. A couple of examples are shown in Figure 2. If the
robot is a kinematic tree, then its connectivity graph is a
topological tree. To describe the connectivity of a kinematic
tree, we first number the bodies and joints according to a
standard scheme. For a robot having a fixed base, the num-
bering proceeds as follows:

1) The fixed base is assigned the number 0 and serves as the
root node of the tree.

Figure 1. MATLAB code for inverse dynamics calculation.
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Figure 2. Two numberings of a simple tree and their
corresponding parent arrays.
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2) The remaining bodies are numbered consecutively from
1 to N in any order such that each body has a higher
number than its parent.

3) The joints are then numbered from 1 to N such that
joint i is the joint that connects body i to its parent.

Having numbered the bodies and joints, the connectivity
can be described using a parent array, called k, which is defined
such that k(i) is the body number of the parent of body i. This
array has the following special property, which is a conse-
quence of the numbering scheme:

0 � k(i) < i for all 1 � i � N : (2)

Many algorithms rely on this property. Note that neither the
numbering nor the parent array is unique. To illustrate this,
Figure 2 shows two possible numberings of the same graph
and their corresponding parent arrays. For the tree on the left,
we have k(1) ¼ 0, k(2) ¼ 1, k(3) ¼ 2, and so on, indicating
that body 0 is the parent of body 1, body 1 is the parent of
body 2, and so on. Joint numbers have not been shown,
because they can be deduced from the body numbers: joint i
connects between bodies i and k(i).

To model a mobile robot, we first place a Cartesian coordi-
nate frame at any convenient fixed location in space. This
frame serves as a virtual fixed base. We then introduce a six-
degree-of-freedom (six-DoF) joint between the fixed base
and any one body of the mobile robot. The chosen body is
then called the floating base. Now, a six-DoF joint does not
introduce any kinematic constraints, so it does not restrict the
mobility of the mobile robot. Instead, its purpose is to supply
the extra variables needed to identify the position and orienta-
tion of the robot relative to its virtual fixed base. Having made
these two modifications, the mobile robot can be treated as a
fixed-base robot and numbered as described above. (The float-
ing base will therefore be body number 1.)

Although k alone already provides a complete description
of the connectivity, it is often helpful to supplement k with
the following sets:

u l(i): the set of children of body i,
u j(i): the set of joints on the path between body i and the

root, and

u m(i): the set of bodies in the subtree starting at body i.
For the left-hand tree in Figure 2, we have l(2) ¼ f3, 5g,
j(3) ¼ f1, 2, 3g, m(4) ¼ f4, 6g, l(5) ¼ ; (the empty set), and
so on.

Geometry
The geometrical part of a robot model is the part that specifies
the relative locations of the joints in each body. It is also the
part that defines a link coordinate system for each body so
that quantities like model.I{i} can be expressed and stored
in link-i coordinates. (Link is the technical term for a body in
a mechanical linkage, so link and body can be used inter-
changeably here.)

To describe the geometry, the first step is to introduce a
pair of coordinate frames for each joint: one fixed in each of
the two bodies connected by the joint. For joint i, which con-
nects between bodies i and k(i), we introduce a frame Fi that is
fixed in body i and a frame Fk(i), i that is fixed in body k(i) (see
Figure 3). We also introduce a special frame, F0, which is fixed
in body 0 and which serves as an absolute, world, or reference
frame (take your pick) for the whole robot. For a mobile
robot, F0 is the frame that was introduced earlier to serve as a
virtual fixed base.

The frames can be located anywhere in their respective
bodies, provided they satisfy the following rules:

1) Frames Fi and Fk(i), i must coincide when the joint variable
of joint i is zero.

2) Frames Fi and Fk(i), i must comply with the joint-specific
alignment requirements of joint i.

As an example of rule 2, if joint i is revolute or helical, then
the z-axes of Fi and Fk(i), i must lie on the joint’s rotation or screw
axis. If, instead, joint i is prismatic, then the two z-axes must be
parallel to the joint’s direction of translation. The purpose of this
rule is to ensure that the joint coordinate transform (labeled XJ(i)
in Figure 3) takes a canonical form for each joint type. For a revo-
lute joint, XJ(i) is a pure rotation about the z-axis. (More infor-
mation on this topic is provided in the next subsection.)

The above rules stipulate only the minimum necessary con-
straints on the placement of coordinate frames and do not con-
strain them completely. It is therefore possible to introduce
additional rules for the purpose of further constraining their
locations. The most well-known example is the scheme of
Denavit and Hartenberg, which has the special property that
the location of Fi relative to Fk(i) is a function of only four
parameters, one of which serves as the joint variable [1], [3], [9].

At the end of this process, there are 2N þ 1 frames in total, of
which N þ 1 have names of the form Fi, and N have names of
the form Fi, j, where j 2 l(i) (which is the same condition as
i ¼ k(j)). Every body in the system, including the fixed base,
now contains exactly one frame Fi plus a variable number of
frames Fi, j, one for each j 2 l(i). At this point, we select Fi to
define the link coordinate system for body i, i.e., link-i coordi-
nates. Thus, the spatial inertia stored in model.I{i} is expressed
in the (Pl€ucker) coordinate system defined by frame Fi.

A complete description of the robot’s geometry can now be
obtained as follows. Let XT(i) be the Pl€ucker coordinate trans-
form from link-k(i) coordinates to the coordinate system defined

body i 

body λ(i )

joint i
(exploded) 

Fλ(i)

Fi

Fλ(i ),i

XT(i )

XJ(i)

Figure 3. Coordinate frames and transforms associated
with joint i.

IEEE Robotics & Automation Magazine90 DECEMBER 2010



by frame Fk(i), i, as shown in Figure 3. Now, a Pl€ucker transform
implicitly describes the relative locations of two coordinate
frames; so XT(i) serves to locate Fk(i), i relative to Fi, and a com-
plete set of transforms, XT(1), . . . , XT(N ), serves to locate every
Fi, j relative to its corresponding Fi. These transforms are stored in
the array model.Xtree, so that model.Xtree{i}¼ XT(i).

Let iXk(i) denote the Pl€ucker coordinate transform from
link-k(i) to link-i coordinates for motion vectors (the corre-
sponding transform for force vectors is iX�k(i)). This transform
locates Fi relative to Fk(i) and therefore locates body i relative
to body k(i). From Figure 3, we can see that

iXk(i) ¼ XJ(i) XT(i): (3)

Equation (3) brings together the connectivity data, k(i), the
geometry data, XT(i), and the joint data, via XJ(i), to express the
relative locations of adjacent bodies as a function of the joint posi-
tion variables. This calculation appears on line 5 of Figure 1,
where iXk(i) is calculated and stored in the variableXup{i}. Quan-
tities like iXk(i) are called link-to-link coordinate transforms.

Joint Models
A joint is a kinematic constraint between two bodies. To
identify them individually, we call one body the predecessor
and the other the successor. In a kinematic tree, the predeces-
sor of joint i is body k(i), and its successor is body i. By conven-
tion, we define the velocity across a joint to be the velocity of
the successor relative to the predecessor, and the force across a
joint to be a force transmitted from the predecessor to the suc-
cessor. Thus, if vJi and fJi are the spatial velocity and force across
joint i, then

vJi ¼ vi � vk(i), (4)

where vi is the velocity of body i, and fJi is the force transmit-
ted from body k(i) to body i through the joint.

A mathematical model of a joint consists of two quantities:
a coordinate transform, XJ, and a motion subspace matrix, S
(also known as a free-modes matrix). For joint i, XJ(i) is the
coordinate transform from Fk(i), i to Fi, as shown in Figure 3,
and Si defines the following relationships between the joint
variables and spatial vectors:

vJi ¼ Si _qi (5)

and

si ¼ ST
i fJi , (6)

where _qi and si are the subvectors of _q and s that contain the
velocity and force variables, respectively, for joint i. We can
see an instance of (5) and (6) on lines 4 and 17, respectively, in
Figure 1. Incidentally, _qi and si also satisfy

si � _qi ¼ fJi � vJi , (7)

which is known as the power-balance equation. The scalar on
the left is the mechanical power delivered to the robot

mechanism at joint i, expressed in terms of joint variables, and
the scalar on the right is the same physical quantity expressed
in terms of spatial vectors. The two are necessarily equal.

A computational model of a joint consists of a piece of code
(such as jcalc in Figure 4) that computes the numeric values of
X J and S as a function of the numeric values of the joint variables
and parameters (if any). If S varies as a function of the joint’s posi-
tion variables, then it is also necessary to compute the numeric
value of a term that depends on @S=@q (see cJ on p. 80 of [3]).

If joint i permits ni degrees of motion freedom, then Si is a
6 3 ni matrix and _qi is an ni 3 1 vector. The total number of
joint variables is then

n ¼
XN
i¼1

ni : (8)

This is the dimension of the vectors in (1). However, in this
tutorial, we have chosen to limit the repertoire of joint types
to revolute, prismatic, and helical. These are all single-DoF
joints, so we have ni ¼ 1 for every joint in the mechanism and
therefore also n ¼ N . Two more simplifications are:

1) the motion subspace matrix simplifies to a joint axis
vector si, and

2) the variables for joint i are the ith elements of their
corresponding joint-space vectors.

Item 2 refers to expressions like q(i) on line 3 of Figure 1
and qd(i) on line 4. These expressions simply extract the ith
element of q, qd, etc. In the general case, the variables for
joint i would be ni-dimensional subvectors of q, qd, etc., and
expressions such as q(i) and qd(i) would have to be
replaced with something a little more complicated.

Another simplification is that revolute and prismatic joints
can be regarded as helical joints having zero pitch and infinite
pitch, respectively; so it is possible to use the array model.
pitch both to define the type of each joint and to supply the
pitch parameter for each helical joint. This tactic can be seen
in the source code of jcalc, which is shown in Figure 4. As
you can see from this code, a revolute joint implements a pure
rotation about the (local) z-axis, a prismatic joint implements a
pure translation in the z-direction, and a helical joint imple-
ments a screwing motion about the z-axis, in which the pitch

Figure 4. MATLAB code for function jcalc.
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parameter determines the lead (per radian) of the screw. The
functions rotz and xlt are defined in Table 1.

To represent a broader range of joint types, we could
replace model.pitch with an array of joint-descriptor data
structures: each descriptor contains a joint-type code and zero
or more parameter values, the number of parameters being
determined by the type code. More information on joint
models can be found in [3], [4], and [8].

The code in Figure 1 shows a clear separation between the
code that implements the dynamics algorithm and the code that
handles joint-dependent calculations, the latter being hived off
into the function jcalc. This organizational feature is standard
practice with 6-D vectors, but it is harder to achieve using 3-D
vectors. As a result, algorithms that are expressed using 3-D vec-
tors tend to be restricted to revolute and prismatic joints, and
their descriptions typically contain many statements of the form

if joint type is revolute then
variable¼ one expression

else
variable¼ another expression.

(For example, see the original description of the recursive
Newton–Euler algorithm in [7].) Clearly, it is a nontrivial

exercise to extend such an algorithm to accommodate a third
joint type. This intertwining of algorithms with joint-specific
details is an impediment to the development of clean, extensi-
ble, general-purpose code, and it is yet another reason to
prefer 6-D vectors over 3-D vectors.

Algorithm
We now return to the code in Figure 1. As mentioned earlier,
this code implements the recursive Newton–Euler algorithm
for calculating inverse dynamics. The equations for this algo-
rithm, expressed using spatial vectors, are as follows:

vi ¼ vk(i) þ si _qi (v0 ¼ 0) (9)

ai ¼ ak(i) þ si€qi þ vi 3 si _qi (a0 ¼ �ag) (10)

fBi ¼ I iai þ vi 3
�I ivi (11)

fJi ¼ fBi þ
X
j2l(i)

fJj (12)

si ¼ sT
i fJi (13)

Equation (9) states that the velocity of body i is the sum of
the velocity of its parent and the velocity across joint i [cf. (4)
and (5)]. Equation (10) says the same for accelerations and is
simply the derivative of (9). Observe that _si ¼ vi 3 si,
because si is fixed in body i. The starting condition for (10) is
a0 ¼ �ag, where ag is the acceleration caused by gravity.
This is a trick that exploits the fact that a uniform gravita-
tional field is indistinguishable from a constant linear accel-
eration. Therefore, instead of calculating the gravitational
force acting on each body and incorporating those forces
into (11), we can simply offset every body’s spatial accelera-
tion by giving the fixed base a fictitious acceleration of �ag

(see line 9 in Figure 1).
In (11)–(13), fBi is the net force acting on body i, and fJi is

the force transmitted across joint i. As mentioned earlier, the
spatial force across a joint is defined to be a force transmitted
from its predecessor body to its successor; so fJi is a force trans-
mitted from body kðiÞ to body i. In other words, joint i is caus-
ing a force of þfJi to act on body i and a force of �fJi to act on
body k(i).

The equation of motion for body i is given by (11). As the
accelerations are already known, the purpose of this equation
is to work out the force required to produce the given acceler-
ation. Equation (12) then calculates the (spatial) joint forces
from the body forces. It works as follows: fBi is the net force
acting on body i, so it must be the sum of all the individual
forces acting on body i. Having accounted for gravity by
means of a fictitious acceleration, instead of a gravitational
force field, the only force acting on body i is those transmitted
to it via the joints. So, fBi ¼ fJi þ

P
j2l(i) (�fJj). A small rear-

rangement of this equation yields (12). Finally, (13) calculates
the joint force variable for joint i from the spatial force trans-
mitted across the joint, per (6).

Equations (9)–(13) provide a mathematical description of
the recursive Newton–Euler algorithm; they describe the
algorithm in principle but omit some calculation details.
Translating these equations into a more explicit description of

Table 1. Instant spatial vector arithmetic (based
on Table A.2 of [3]).
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the algorithm produces the pseudocode shown in Figure 5.
On comparing the pseudocode with the equations, we can see
that the following things have changed.

1) The vectors in (9)–(13) are tacitly assumed to be
expressed in a single common coordinate system; how-
ever, their counterparts in Figure 5 are expressed in link
coordinates, and the necessary link-to-link coordinate
transforms (iXk(i) and k(i)X�i ) have been incorporated
into lines 6, 7, and 13.

2) The method of calculating the link-to-link transforms
has been made explicit in lines 4 and 5.

3) The sum over l(i) in (12) has been replaced with code
that performs the same summation but using k(i) instead.

Item 3 refers to lines 8 and 12–14. Line 8 initializes every
variable fi to have the value of fBi as given by (11). However,
by the time fi is used on line 11 to calculate si, its value is equal
to fJi as given in (12). The change is effected by lines 12–14,
which add each vector fi ( ¼ fJi) back to its parent. By the time
fi is used on line 11, the contributions from all of its children
have already been added in.

On comparing the pseudocode in Figure 5 with the MAT-
LAB source code in Figure 1, it can be seen that the translation
from pseudocode to source code is entirely straightforward.
Again, look how short everything is: five equations have given
rise to 15 lines of pseudocode and 22 lines of source code. This
degree of brevity would not be possible using 3-D vectors. Of
course, if you want source code in a language such as C or
Cþþ, then the code will be somewhat longer; however, the
translation from pseudocode to source code will still be
straightforward, provided you have access to a suitable library
of spatial arithmetic functions.

Arithmetic
To perform arithmetic with spatial vectors, you need a spatial
arithmetic library. Most arithmetic operations on spatial vec-
tors are just standard matrix arithmetic. Therefore, if you are
using a programming language that already has matrix arith-
metic built in (such as MATLAB or Octave), then only a small
number of additional functions are needed. Table 1 presents a
small but sufficient set.

The functions rotx, roty, rotz, and xlt construct
Pl€ucker coordinate transforms (for motion vectors) from a
current coordinate system to one that has been rotated or
translated, as appropriate, relative to the current one. Exam-
ples of their use can be found in Figure 4. Note that the for-
mulae listed for rx, ry, and rz are coordinate rotation
matrices; they rotate the coordinate system in which the vec-
tor is represented. In many robotics textbooks (e.g., [1],
p. 372), you will find formulae for rotation matrices that
rotate the vector itself. These two types of matrix are inverses
of each other.

The functions crm and crf implement the two spatial
cross-product operators. Examples of their use can be found in
Figure 1. The symbols v 3 and v 3� appearing in these two
functions are the names of the return values. The expressions
v1:3 and v4:6 are 3-D vectors formed from the first and last
three Pl€ucker coordinates of v.

The function mcI constructs a spatial rigid-body inertia
from arguments giving the body’s mass (m), the position of its
center of mass (c), and its rotational inertia about its center of
mass (IC). You would use this function to initialize the inertia
matrices in a robot model data structure.

Finally, XtoV calculates a small-magnitude motion vector
from the Pl€ucker transform for a small change of coordinates.
If A and B denote two Cartesian frames, and also the Pl€ucker
coordinate systems defined by those frames, then we can
define XtoV as follows: if A and B are close together, and X is
the Pl€ucker coordinate transform from A to B, then XtoV (X)
approximates to the velocity vector that would move frame A
to coincide with B after one time unit. The returned value also
happens to be an invariant of X (i.e., v ¼ Xv) so it has the
same value in both A and B coordinates. An example of this
function’s use appears in the next section.

If you want to perform spatial arithmetic in a programming
language such as C or Cþþ, then you will need a more exten-
sive library. Some guidelines on how to build such a library,
and a collection of formulae for implementing highly efficient
spatial arithmetic, can be found in [3], and a less comprehen-
sive version appears in [3]. Implementations of the functions in
Table 1 can be found in [5].

Kinematics
Spatial vectors can be used both for positional kinematics and
for instantaneous kinematics. We have already encountered
the latter in (9) and (10), which present recursive formulae for
calculating body velocities and accelerations from joint veloc-
ity and acceleration variables. Body positions can be calculated
recursively using the formula

iX0 ¼ iXk(i)
k(i)X0, (k(i) 6¼ 0) (14)

which calculates the coordinate transform from reference
coordinates (frame F0) to the body coordinate frame (Fi) of
each body in the mechanism. As mentioned earlier, a coordi-
nate transform implicitly defines the relative locations of two

Figure 5. The recursive Newton–Euler algorithm.
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coordinate frames; so iX0 effectively locates Fi, and therefore
also body i, relative to F0.

Suppose we want to move a particular body, say body b, so
that its body coordinate frame, Fb, coincides with a given tar-
get frame, Fd. We can express the location of Fd by means of
the coordinate transform dX0, which is assumed to be given. If
Fb is already close to Fd, then we can use the function XtoV in
Table 1 to calculate a small displacement, Dp, as follows:

Dp ¼ XtoV(dXb) ¼ XtoVðdX0
0XbÞ: (15)

This vector approximates to the small screw displacement that
would bring Fb into coincidence with Fd, the error in the
approximation diminishing quadratically with the angular
magnitude of Dp. Alternatively, Dp can be regarded as approx-
imating the velocity that would bring Fb into coincidence
with Fd in one time unit. As Dp is an invariant of dXb, it has
the same value in both Fb and Fd coordinates.

If Fd is a reachable position for body b, then there will be a
joint position change, Dq, that causes a displacement of Dp in
body b. In general, Dq will not be unique. The exact relation-
ship between Dp and Dq may be difficult to obtain, but a first-
order approximation is given by

Dp ¼ b Jb Dq, (16)

where bJb is the Jacobian for body b expressed in b coordinates
(Jacobians are discussed in the next section). Equations (15)
and (16) form the basis for an iterative inverse-kinematics algo-
rithm as follows:

while not close enough do
calculate dXb and bJ b
Dp ¼ XtoV(dXb)
Dq ¼ b Jþb Dp
q ¼ qþ Dq

end,
where bJþb is the pseudoinverse of bJb.

Some MATLAB source code to implement this calculation is
shown in Figure 6. The variables q0 and q are the initial guess and
computed final value of q, and the variables body and Xd contain
b and dX0. Line 3 sets dpos (¼ Dp) to a dummy value that will
pass the test on line 4, and the functionsbodypos andbodyJac
calculate bX0 and 0Jb, respectively. Line 7 calculates bJ b from 0Jb,
line 8 calculates Dp, and line 9 calculates Dq using the pseudoin-
verse of bJ b. Bear in mind that this is not a serious inverse-kinemat-
ics function, as it fails to check for a variety of things that can go
wrong, such as singularities and unreachable positions.

Jacobians
In common robotics usage, a Jacobian is a matrix that maps the
joint-space velocity vector, _q, to some other kind of velocity. We
have used the term body Jacobian, and the symbol Jb, to refer to
the matrix that maps _q to the spatial velocity of body b, as in

vb ¼ Jb _q: (17)

To obtain a formula for J b, we first express vb in nonrecur-
sive form:

vb ¼
X
i2j(b)

si _qi: (18)

This equation simply states that vb is the sum of the joint veloc-
ities of all the joints on the path between body b and the fixed
base. Rewriting this equation as

vb ¼
XN
i¼1

ebisi _qi, (19)

where

ebi ¼
1 if i 2 j(b)
0 otherwise

�
(20)

yields the following expression for J b:

Jb ¼ ½ eb1s1 eb2s2 � � � ebN sN � : (21)Figure 6. MATLAB code for iterative inverse kinematics.
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Thus, the body Jacobian for body b is the 6 3 N matrix whose
ith column is either si or zero, depending on whether joint i is
or is not on the path between the fixed base and body b. More
generally, a body Jacobian is a 1 3 N block matrix in which
the ith block is the 6 3 ni matrix ebiSi, and the overall dimen-
sion of the Jacobian is 6 3 n [cf. (8)]. The code for bodyJac
in Figure 6 should now make sense: lines 2–6 calculate ebi and
lines 8–17 calculate the nonzero columns. For the special case
where b is the end effector of a serial robot, we have ebi ¼ 1 for
all i, which implies the following simplified formula for the
end-effector Jacobian:

Jee ¼ ½s1 s2 . . . sN � : (22)

If we need to be explicit about the coordinate system, then
(17) and (21) can be written as

Avb ¼ A J b _q (23)
and

AJb ¼ ½ eb1
As1 eb2

As2 . . . ebN
AsN � , (24)

where A is the name of a coordinate system. These equations
show that every column of a body Jacobian must be expressed in
the same coordinate system as the velocity vector it maps to. The
coordinate transformation rule for a body Jacobian is therefore

BJ b ¼ B XA
AJ b: (25)

Still on the subject of coordinate systems, here is a popular
trap for the unwary. You will occasionally encounter an equa-
tion of the form

x

v

� �
¼ J _q, (26)

where x and v are described as the angular and linear velocity
of the end effector (or some other body) expressed in absolute,
reference, or base coordinates (i.e., the Cartesian coordinate
system defined by frame F0). In translating this equation from
3-D to spatial vectors, it is tempting to regard the left-hand
side as being the Pl€ucker coordinates of a spatial velocity
expressed in frame F0. However, this is nearly always incor-
rect, because the 3-D vector v nearly always refers to some
particular point in the end effector, such as the tool center
point, which does not coincide with the origin of F0. The cor-
rect translation is this: the left-hand side of (26) contains the
Pl€ucker coordinates of the spatial velocity of the end effector
expressed in a coordinate system that is parallel to absolute
coordinates but has its origin at the particular point in the end
effector to which v refers.

Jacobians can also map forces. If a robot makes contact with
its environment through body b, and the environment responds
by exerting a force of fe on body b, then the effect of that force
on the robot is equivalent to a joint-space force of se given by

se ¼ JT
b fe: (27)

The robot’s control system can resist this force by adding �se

to its joint-force command. This works because fe acting on
body b has the same effect on the robot as se acting at the
joints, and the two forces þse and �se cancel. In applications
like this, it is important to be clear and unambiguous about
whether a force is being exerted by the environment on the
robot or the other way around. In this example, the environ-
ment exerts a force of fe on the robot, and the robot exerts a
force of�fe on the environment.

Acceleration
Equation (10) provides us with a recursive formula for calcu-
lating body accelerations. A nonrecursive formula can be
obtained by differentiating (18):

ab ¼
X
i2j(b)

(si€qi þ _si _qi): (28)

If we assume that _si ¼ vi 3 si, then this equation can be further
expanded to

ab ¼
X
i2j(b)

si€qi þ
X
i2j(b)

�X
j2j(i)

sj _qj

�
3 si _qi

¼
X
i2j(b)

si€qi þ
X
i2j(b)

X
j2j(i)

sj _qj 3 si _qi: (29)

It is sometimes useful to define a velocity-product accelera-
tion, avp

b , equal to the velocity terms on the right-hand side:

avp
b ¼

X
i2j(b)

X
j2j(i)

sj _qj 3 si _qi: (30)

In dynamics applications, this quantity might also include
the fictitious acceleration that simulates gravity. Velocity-
product accelerations can be calculated efficiently by the
recursive formula

avp
i ¼ avp

k(i) þ vi 3 si _qi, (avp
0 ¼ 0 or � ag) (31)

which is obtained from (10) by setting €qi ¼ 0.
Another equation for the acceleration of body b can be

obtained by differentiating (17):

ab ¼ Jb €qþ _Jb _q: (32)

At first sight, the term _Jb _q looks like it might be difficult to cal-
culate. However, a moments thought reveals that _Jb _q ¼ avp

b ; so
this equation can be written as

ab ¼ Jb €qþ avp
b : (33)

If a two-handed robot has rigidly grasped a single object
with both hands, then the kinematic acceleration constraint
on that robot is al ¼ ar , where l and r are the body numbers
of the left and right hands, respectively. Using (33), we
can express this as a constraint on the joint accelerations
as follows:
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( J l � J r )€q ¼ avp
r � avp

l : (34)

If a robot mechanism contains kinematic loops, then the loop-
closure constraints can be formulated in a similar manner to
(34). However, if one wishes to simulate such a mechanism,
then the acceleration constraints must be stabilized to prevent
accumulation of position and velocity errors [3], [8].

Dynamics
We have already examined inverse dynamics in some detail, so
let us now look at forward dynamics, which is the problem of
calculating a robot’s acceleration response to applied forces. In
analogy with (1), we can express the forward-dynamics prob-
lem mathematically as

€q ¼ FD(model, q, _q, s), (35)

where the objective is to calculate the numeric value of the
function FD from the numeric values of its arguments. There
are many ways to do this; however, we shall consider only the
two most efficient ways.

Composite Rigid-Body Algorithm
The joint-space equation of motion for a kinematic tree can
be expressed in the following canonical form:

s ¼ H _qþ C, (36)

where H is the joint-space inertia matrix, and C is a vector
containing the Coriolis, centrifugal, and gravitational terms. If
we can calculate H and C, then we can solve the forward-
dynamics problem simply by solving (36) for _q. We already
know how to calculate C, because

C ¼ ID(model, q, _q, 0) (37)

[cf. (1)], so the only remaining problem is how to calculate H .
The best algorithm for this job is called the composite-rigid-
body algorithm, which we shall now derive.

One of the defining properties of the joint-space inertia matrix
is that the kinetic energy of a robot mechanism is given by

T ¼ 1

2
_qTH _q ¼ 1

2

Xn

i¼1

Xn

j¼1

Hij _qi _qj: (38)

However, the kinetic energy is also the sum of the kinetic
energies of the individual bodies, which can be written in
spatial-vector notation as

T ¼
XN
k¼1

1

2
vT

k Ikvk: (39)

Substituting for vk using (18) gives

T ¼ 1

2

XN
k¼1

� X
i2j(k)

si _qi

�
TIk

� X
j2j(k)

sj _qj

�

¼ 1

2

XN
k¼1

X
i2jðkÞ

X
j2jðkÞ

sT
i Iksj _qi _qj : ð40Þ

Now, the expression on the right-hand side is a sum over all
i; j; k triples in which both i and j are elements of jðkÞ. This
same set of triples can also be described as the set of all i; j; k
triples in which k 2 m(i) and k 2 m(j). So we can rewrite (40)
as follows:

T ¼ 1

2

XN
i¼1

XN
j¼1

X
k2mðiÞ\mðjÞ

sT
i Iksj _qi _qj : ð41Þ

On comparing (41) with (38), if we take into account that
both equations must be true for all _q, and also that n ¼ N for
the class of robots we are considering, then it follows that

Hij ¼
X

k2m(i)\m(j)

sT
i Iksj: (42)

There are two simplifications we can make to this equation.
The first is that

m(i) \ m( j) ¼
m(i) if i 2 m(j)
m(j) if j 2 m(i)
; otherwise:

8<
: (43)

The second is that we can define a composite rigid-body
inertia, I c

i , which is the inertia of all the bodies in the subtree
m(i) treated as a single composite rigid body. This inertia is
given by

I c
i ¼

X
j2m(i)

I j,

but the best way to calculate it is via the recursive formula

I c
i ¼ I i þ

X
j2l(i)

I c
j : (44)

With these two simplifications, we can rewrite (42) as

Hij ¼
sT
i I c

isj if i 2 m( j)
sT
i I c

jsj if j 2 m(i)
0 otherwise:

8<
: (45)

Equations (44) and (45) together define the composite-rigid-
body algorithm.

Before moving on, let us review what we have just
achieved. Using only a small amount of algebra, we have
obtained a very compact expression for Hij in (42) and a
compact description of the composite-rigid-body algorithm
in (44) and (45). Along the way, we have not had to worry
about whether joint i is revolute, prismatic, or helical and
write different equations for each case; nor have we written
separate expressions for the linear and angular components
of kinetic energy; nor have we defined a point in each body,
expressed equations at that point, and transferred them from
one point to another; and nor have we written equations to
calculate the center of mass of a composite body or use the
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parallel-axes theorem to calculate a rotational inertia about
a new center of mass. In short, we have benefited consider-
ably from the use of spatial-vector notation. Readers may
wish to compare this derivation with the original 3-D-vec-
tor derivation in [10], bearing in mind that the original
applied only to unbranched chains with revolute and
prismatic joints.

Equations (44) and (45) provide us with a basic mathemati-
cal description of the algorithm. If we want to implement it on
a computer, then we must first decide what coordinate systems
to use. The best choice, for all but the largest rigid-body sys-
tems, is to use link coordinates. We can express the algorithm
in link coordinates as follows:

I c
i ¼ I i þ

X
j2l(i)

iX�j I c
j

jX i, (46)

k( j)f i ¼ k( j)X�j
jf i, (if i ¼ I c

i si) (47)

Hij ¼
jf T

i sj if i 2 m( j)
Hji if j 2 m(i)
0 otherwise:

8<
: (48)

These equations show explicitly where the coordinate
transforms are performed. Note that the quantities si, I i, and I c

i
appearing in these equations are expressed in link-i coordi-
nates, whereas the same symbols in previous equations were
tacitly assumed to be expressed in a single unidentified com-
mon coordinate system.

The symbol jf i in (47) is the spatial force, expressed in link-
j coordinates, that imparts an acceleration of si (i.e., a unit
acceleration about the axis of joint i) to a composite rigid body
comprising all of the bodies in subtree m(i). The algorithm
requires the calculation of ifi for every i and jfi for every
j 2 j(i)nfig.

The pseudocode for this algorithm is shown in Figure 7. It
employs the same tactic as was used in the recursive Newton–

Euler algorithm to convert the summation over l(i) in (46)
into code that uses only k: each variable I c

i is initialized to I i in
the first loop, and then each I c

i is added to its parent in the sec-
ond loop. By the time I c

i is used on line 9 to calculate ifi , which
is stored in the local variable f , it has already received the con-
tributions from all of its children and, therefore, has the correct
final value.

The statement H ¼ 0 on line 1 is necessary, because the
remaining code will initialize only the nonzero elements of H .
Certain elements of H will automatically be zero, simply
because of the connectivity of the robot. This phenomenon is
called branch-induced sparsity, and it arises from the third case
in (48). This phenomenon is discussed in detail in [2] and [3]
along with methods to greatly accelerate the solution of (36)
by exploiting the sparsity.

Articulated-Body Algorithm
The articulated-body algorithm is an O(N ) algorithm that
solves the forward-dynamics problem by the following
strategy: at the outset, we know neither the acceleration
of body i nor the force transmitted across joint i; however,

we do know that the relationship between them must be
linear. It must therefore be possible to express the rela-
tionship between these two vectors in an equation of
the form

fi ¼ IA
i ai þ pA

i : (49)

The two coefficients in this equation, IA
i and pA

i , are called the
articulated-body inertia and bias force, respectively, of body i ;
they describe the acceleration response of body i to an applied
spatial force, taking into account the influence of all the other
bodies in the subtree m(i). These coefficients have two special
properties that form the basis of the articulated-body algo-
rithm. The special properties are that

1) they can be calculated recursively from the tips of the
tree to the base, and

2) once they have been calculated, they allow the accelera-
tions of the bodies and joints to be calculated recursively
from the base to the tips.

The calculation of IA
i and pA

i closely resembles the two-
body example presented in Part 1 [6]. Referring to Figure 8,
we initially assume that body i has only one child, which is
labeled body j. The relevant equations for body i are then

fi � fj ¼ I iai þ pi, (50)

fj ¼ IA
j aj þ pA

j , (51)

aj ¼ ai þ cj þ sj€qj (52)

Figure 7. The composite-rigid-body algorithm.

Spatial vectors can be used
both for positional kinematics

and for instantaneous kinematics.
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and

sj ¼ sT
j fj , (53)

where

pi ¼ vi 3
�I ivi (54)

and

cj ¼ vj 3 sj _qj: (55)

Equation (50) is the equation of motion for body i, which
we have written in terms of the rigid-body inertia and bias
force, I i and pi, to make it obvious that the rigid-body and
articulated-body equations of motion have the same algebraic
form. Equation (51) is the articulated-body equation of
motion for body j, which describes the relationship between fj
and aj, taking into account the dynamics of every body and
joint in the subtree mðjÞ. We assume that IA

j and pA
j are known.

Equations (52) and (53) are the acceleration and force con-
straint equations for joint j.

The objective is to solve (50)–(53) to obtain an equation
having the same form as (49), which is an equation involving
only the two unknowns f i and ai. To obtain this result, the first
step is to solve (51)–(53) for the unknown acceleration €qj. We
can do this by substituting (51) and (52) into (53) as follows:

sj ¼ sT
j (IA

j aj þ pA
j )

¼ sT
j (IA

j (ai þ cj þ sj€qj)þ pA
j ),

which yields the following equation for €qj:

€qj ¼
sj � sT

j (IA
j (ai þ cj)þ pA

j )

sT
j IA

j sj
: (56)

At this point, we can simplify (56) a little by introducing
the quantity

uj ¼ sj � sT
j pA

j : (57)

Substituting (57) in (56) gives

€qj ¼
uj � sT

j IA
j (ai þ cj)

sT
j IA

j sj
: (58)

Having found an expression for €qj, the remainder of the
problem is solved by substituting (51), (52), and (58) back into
(50) as follows:

fi¼ I iaiþpiþ fj

¼ I iaiþ IA
j ajþpiþpA

j

¼ I iaiþ IA
j (aiþ cjþ sj€qj)þpiþpA

j

¼ I iaiþ IA
j aiþ cjþ

sj(uj� sT
j IA

j (aiþ cj))

sT
j IA

j sj

 !
þpiþpA

j : (59)

On comparing this equation with (49), we get the following
expressions for IA

i and pA
i :

IA
i ¼ I i þ Ia

j (60)

and

pA
i ¼ pi þ pa

j , (61)

where

Ia
j ¼ IA

j �
IA

j sjsT
j IA

j

sT
j IA

j sj
(62)

and

pa
j ¼ Ia

j cj þ
IA

j sjuj

sT
j IA

j sj
þ pA

j : (63)

The next step is to drop the assumption that body i has
only one child. If body i has multiple children, then it is pos-
sible to process them one at a time using the above proce-
dure. This works because spatial inertias are additive and
rigid-body and articulated-body equations have the same
algebraic form. In processing the rth child, we simply
replace I i and pi in (50) with the articulated-body inertia
and bias force that account for the first r � 1 children. The
end result is the following pair of equations, which replace
(60) and (61):

IA
i ¼ I i þ

X
j2l(i)

Ia
j (64)

and

pA
i ¼ pi þ

X
j2l(i)

pa
j : (65)

The definitions of Ia
j and pa

j remain unchanged.
The final step is to calculate the accelerations. We

already have the necessary equations, being (52) and (58),
but the calculation can be performed slightly more effi-
ciently as follows:

a0i ¼ ak(i) þ ci, (a0 ¼ �ag) (66)

€qi ¼
ui � sT

i IA
i a0i

sT
i IA

i si
, (67)

body i 

body λ(i) 

body j 

fi

fj

Figure 8. Calculating articulated-body inertias.
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ai ¼ a0i þ si€qi: (68)

The complete equations for the articulated-body algo-
rithm, expressed in link coordinates, are shown in Figure 9.
The algorithm makes a total of three passes through the
tree: an outward pass (base to tips) to calculate the velocity
terms ci and pi, an inward pass (tips to base) to calculate IA

i ,
pA

i , and related terms, and a second outward pass to calculate
the accelerations. A more detailed description of this algo-
rithm can be found in [3], and source code can be obtained
from [5].

Deriving the articulated-body algorithm is an example of
a dynamics problem that would be forbiddingly difficult
to attempt using 3-D vectors. Whereas other algorithms
described in this tutorial were invented using 3-D vectors, the
articulated-body algorithm was invented using spatial vectors.
In fact, spatial vectors themselves were invented as a side effect
of trying to invent the articulated-body algorithm. This algo-
rithm, and many others that have followed it, make an important
statement about spatial vectors: they are a tool for discovery;
they let you go beyond what is feasible to attempt using 3-D
vectors.

Conclusion
This tutorial has demonstrated the use of spatial vectors in a
variety of kinematics and dynamics calculations. A model-
based approach was adopted in which a description of the
robot mechanism is stored in a model data structure, and the

various equations and algorithms are designed to use this data
in their calculations. The class of robots considered was the
class of general kinematic trees having revolute, prismatic, and
helical joints; the idea being to show how easily spatial vectors
cope with a high degree of generality. The focus of this tutorial
has ranged from mathematics to computer code to make the
point that spatial vectors are both an analytical tool and a com-
putational tool. In both this tutorial and Part 1, the emphasis
has been on human productivity: fewer equations, simpler
problem solving, and shorter code. If your application also
needs high computational efficiency, then see Appendix A of
[3]. A mastery of spatial vectors gives you a different perspec-
tive on rigid-body kinematics and dynamics and is a worth-
while skill for a roboticist.

Keywords
Dynamics, kinematics, spatial vectors, dynamics algorithms,
software.
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Figure 9. Equations of the articulated-body algorithm.
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