User Tools

Site Tools


geometric_algebra

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
geometric_algebra [2021/10/20 07:43]
pbk [Articles]
geometric_algebra [2022/01/15 02:48] (current)
pbk [Lecture notes and tutorials]
Line 278: Line 278:
   * [[http://isites.harvard.edu/fs/docs/icb.topic1048774.files/clif_mein.pdf|Clifford algebras and Lie groups]] {{ga:clif_mein.pdf|(local)}}- //Eckhard Meinrenken//, University of Toronto.   * [[http://isites.harvard.edu/fs/docs/icb.topic1048774.files/clif_mein.pdf|Clifford algebras and Lie groups]] {{ga:clif_mein.pdf|(local)}}- //Eckhard Meinrenken//, University of Toronto.
   * [[https://ocw.mit.edu/resources/res-8-001-applied-geometric-algebra-spring-2009|Applied Geometric Algebra]] (2009) - //László Tisza//, MIT OpenCourseWare.   * [[https://ocw.mit.edu/resources/res-8-001-applied-geometric-algebra-spring-2009|Applied Geometric Algebra]] (2009) - //László Tisza//, MIT OpenCourseWare.
 +  * [[https://www.cefns.nau.edu/~schulz/grassmann.pdf|Theory and application of Grassmann Algebra]] (2011) - //William C. Schulz//, Northern Arizona University.
   * [[https://lyseo.edu.ouka.fi/cms7/sites/default/files/geometric_algebra-tl.pdf|What is geometric algebra?]] (2016) - //Teuvo Laurinolli//, Oulun Lyseon.   * [[https://lyseo.edu.ouka.fi/cms7/sites/default/files/geometric_algebra-tl.pdf|What is geometric algebra?]] (2016) - //Teuvo Laurinolli//, Oulun Lyseon.
   * [[https://www.zatlovac.eu/lecturenotes/GAIntroLagape.pdf|Geometric Algebra and Calculus: Unified Language for Mathematics and Physics]] (2018) - //Vaclav Zatloukal//, Czech Technical University in Prague.   * [[https://www.zatlovac.eu/lecturenotes/GAIntroLagape.pdf|Geometric Algebra and Calculus: Unified Language for Mathematics and Physics]] (2018) - //Vaclav Zatloukal//, Czech Technical University in Prague.
   * [[https://dspace.library.uu.nl/bitstream/handle/1874/383367/IntroductionToGeometricAlgebraV2.pdf|Introduction to Geometric Algebra, a powerful tool for mathematics and physics]] (2019) - //Denis Lamaker//, Universiteit Utrecht.   * [[https://dspace.library.uu.nl/bitstream/handle/1874/383367/IntroductionToGeometricAlgebraV2.pdf|Introduction to Geometric Algebra, a powerful tool for mathematics and physics]] (2019) - //Denis Lamaker//, Universiteit Utrecht.
 +  * [[https://mattferraro.dev/posts/geometric-algebra|What is the Inverse of a Vector?]] (2021) - //Matt Ferraro//.
  
 ===== Videos ===== ===== Videos =====
Line 318: Line 320:
   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.
   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.
-  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] - //sudgylacmoe//.+  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] and [[https://www.youtube.com/playlist?list=PLVuwZXwFua-0Ks3rRS4tIkswgUmDLqqRy|From Zero to Geo]] - //sudgylacmoe//.
   * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.   * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.
   * [[https://www.youtube.com/watch?v=11sH9X0OO9Y&list=PLnpuwbuviU2j7OSnZdstP5_g1ejA32bYA|Geometric Algebra Lectures ]] - //Miroslav Josipović//.   * [[https://www.youtube.com/watch?v=11sH9X0OO9Y&list=PLnpuwbuviU2j7OSnZdstP5_g1ejA32bYA|Geometric Algebra Lectures ]] - //Miroslav Josipović//.
Line 1371: Line 1373:
   * [[https://arxiv.org/pdf/2107.03771.pdf|Graded Symmetry Groups: Plane and Simple]] (2021) - //Martin Roelfs, Steven De Keninck//   * [[https://arxiv.org/pdf/2107.03771.pdf|Graded Symmetry Groups: Plane and Simple]] (2021) - //Martin Roelfs, Steven De Keninck//
 The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a graded structure on Lie groups, which is not evident in their matrix representation. By embracing this graded structure, the invariant decomposition theorem was proven: any composition of k linearly independent reflections can be decomposed into ⌈k/2⌉ commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi-Chasles' theorem as its 3D Euclidean special case. The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a graded structure on Lie groups, which is not evident in their matrix representation. By embracing this graded structure, the invariant decomposition theorem was proven: any composition of k linearly independent reflections can be decomposed into ⌈k/2⌉ commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi-Chasles' theorem as its 3D Euclidean special case.
 +
 +  * [[https://www.pacm.princeton.edu/sites/default/files/pacm_arjunmani_0.pdf|Representing Words in a Geometric Algebra]] (2021) - //Arjun Mani//
 +In this paper we introduce and motivate geometric algebra as a better representation for word embeddings. Next we describe how to implement the geometric product and interestingly show that neural networks can learn this product. We then introduce a model that represents words as objects in this algebra and benchmark it on large corpuses; our results show some promise on traditional word embedding tasks. Thus, we lay the groundwork for further investigation of geometric algebra in word embeddings.
 +
 +  * [[https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cmu2.12188|An approach to adaptive filtering with variable step size based on geometric algebra]] (2021) - //Haiquan Wang, Yinmei He et al//
 +Recently, adaptive filtering algorithms have attracted much more attention in the field of signal processing. By studying the shortcoming of the traditional real-valued fixed step size adaptive filtering algorithm, this paper proposed the novel approach to adaptive filtering with variable step size based on Sigmoid function and geometric algebra (GA).
  
   * [[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488174|A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995–2020]] (2021) - //Eduardo Bayro-Corrochano//   * [[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488174|A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995–2020]] (2021) - //Eduardo Bayro-Corrochano//
 Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics, computer science, and engineering. This review presents a comprehensive study of works on Quaternion Algebra and GA applications in computer science and engineering from 1995 to 2020. Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics, computer science, and engineering. This review presents a comprehensive study of works on Quaternion Algebra and GA applications in computer science and engineering from 1995 to 2020.
 +
 +  * [[https://dspace.library.uu.nl/bitstream/handle/1874/403340/thesis.pdf|Clifford algebras and their application in the Dirac equation]] (2021) - //Paul van Hoegaerden//
 +The aim of this thesis will be to study the Clifford algebras that appear in the derivation of the Dirac equation and investigate alternative formulations of the Dirac equation using (complex) quaternions. To this end, we will first look at the symmetries of the Dirac equation and some of the additional insights that follow from the Dirac equation. We will also give a derivation of the Dirac equation starting from the Schrödinger equation, in which we will come across the gamma matrices.
 +
 +  * [[https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cta.3132|Geometric Algebra for teaching AC Circuit Theory]] (2021) - //Francisco G. Montoya, Raúl Baños et al//
 +This paper presents and discusses the usage of Geometric Algebra (GA) for the analysis of electrical alternating current (AC) circuits. The potential benefits of this novel approach are highlighted in the study of linear and nonlinear circuits with sinusoidal and non-sinusoidal sources in the frequency domain, which are important issues in electrical engineering undergraduate courses.
 ===== Books ===== ===== Books =====
  
geometric_algebra.1634715806.txt.gz · Last modified: 2021/10/20 07:43 by pbk