User Tools

Site Tools


geometric_algebra

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
geometric_algebra [2020/09/07 19:55] – [Videos] pbkgeometric_algebra [2021/10/20 07:56] – [Articles] pbk
Line 318: Line 318:
   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.
   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.
 +  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] - //sudgylacmoe//.
 +  * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.
 +  * [[https://www.youtube.com/watch?v=11sH9X0OO9Y&list=PLnpuwbuviU2j7OSnZdstP5_g1ejA32bYA|Geometric Algebra Lectures ]] - //Miroslav Josipović//.
 +  * [[https://www.youtube.com/watch?v=HGcBu4TQgRE|Quaternions and Clifford Algebra]] - //Q. J. Ge and Anurag Purwar//, Stony Brook University.
 +  * [[https://www.youtube.com/watch?v=LestlcDk6Iw|Foundations of Geometric Algebra Computing]] - Lecture at ICU Tokyo, //Dietmar Hildenbrand//.
 +  * [[https://www.youtube.com/watch?v=e5D7Bma9Vhw&list=PLxo3PbygE0PLdFFy_2b02JAaUsleFW8py|Geometric Algebra]] - First Course in STEMCstudio, //David Geo Holmes//.
 +  * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjyWv5wLVV7QfeS_d8pwCPv_|AGACSE2021]] - Selected talks.
 +  * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjxrsTOr0KLDilkZaw7UE2Vc|Plane-based Geometric Algebra Tutorial]] - Presentation at SIBGRAPI 2021, //Steven De Keninck and Leo Dorst//.
 ===== Computing frameworks ===== ===== Computing frameworks =====
   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.
Line 411: Line 419:
   * [[https://www.researchgate.net/publication/228955605_A_brief_introduction_to_Clifford_algebra|A brief introduction to Clifford Algebra]] (2010) - //Silvia Franchini, Giorgio Vassallo, Filippo Sorbello//   * [[https://www.researchgate.net/publication/228955605_A_brief_introduction_to_Clifford_algebra|A brief introduction to Clifford Algebra]] (2010) - //Silvia Franchini, Giorgio Vassallo, Filippo Sorbello//
 Geometric algebra (also known as Clifford algebra) is a powerful mathematical tool that offers a natural and direct way to model geometric objects and their transformations. It is gaining growing attention in different research fields as physics, robotics, CAD/CAM and computer graphics. Clifford algebra makes geometric objects (points, lines and planes) into basic elements of computation and defines few universal operators that are applicable to all types of geometric elements. This paper provides an introduction to Clifford algebra elements and operators. Geometric algebra (also known as Clifford algebra) is a powerful mathematical tool that offers a natural and direct way to model geometric objects and their transformations. It is gaining growing attention in different research fields as physics, robotics, CAD/CAM and computer graphics. Clifford algebra makes geometric objects (points, lines and planes) into basic elements of computation and defines few universal operators that are applicable to all types of geometric elements. This paper provides an introduction to Clifford algebra elements and operators.
 +
 +  * [[https://vixra.org/pdf/1203.0011v1.pdf|A Very Brief Introduction to Clifford Algebra]] (2012) - //Stephen Crowley//
 +This article distills many of the essential definitions from the very thorough book, Clifford Algebras: An Introduction, by Dr D.J.H. Garling, with some minor additions.
  
   * [[http://www2.montgomerycollege.edu/departments/planet/planet/Numerical_Relativity/bookGA.pdf|An Introduction to Geometric Algebra and Calculus]] (2014) - //Alan Bromborsky//   * [[http://www2.montgomerycollege.edu/departments/planet/planet/Numerical_Relativity/bookGA.pdf|An Introduction to Geometric Algebra and Calculus]] (2014) - //Alan Bromborsky//
Line 829: Line 840:
 This thesis investigates the emerging field of Conformal Geometric Algebra (CGA) as a new basis for a CG framework. Computer Graphics is, fundamentally, a particular application of geometry. From a practical standpoint many of the low-level problems to do with rasterising triangles and projecting a three-dimensional world onto a computer screen have been solved and hardware especially designed for this task is available. This thesis investigates the emerging field of Conformal Geometric Algebra (CGA) as a new basis for a CG framework. Computer Graphics is, fundamentally, a particular application of geometry. From a practical standpoint many of the low-level problems to do with rasterising triangles and projecting a three-dimensional world onto a computer screen have been solved and hardware especially designed for this task is available.
  
-  * [[http://home.deib.polimi.it/tubaro/Journals/Journal_2008_DA.pdf|3D Motion from structures of points, lines and planes]] (2007) - //Andrea Dell'Acqua, Augusto Sarti, Stefano Tubaro//+  * [[https://tubaro.faculty.polimi.it/Journals/Journal_2008_DA.pdf|3D Motion from structures of points, lines and planes]] (2007) - //Andrea Dell'Acqua, Augusto Sarti, Stefano Tubaro//
 In this article we propose a method for estimating the camera motion from a video-sequence acquired in the presence of general 3D structures. Solutions to this problem are commonly based on the tracking of point-like features, as they usually back-project onto viewpoint-invariant 3D features. In order to improve the robustness, the accuracy and the generality of the approach, we are interested in tracking and using a wider class of structures. In addition to points, in fact, we also simultaneously consider lines and planes. In order to be able to work on all such structures with a compact and unified formalism, we use here the Conformal Model of Geometric Algebra, which proved very powerful and flexible. In this article we propose a method for estimating the camera motion from a video-sequence acquired in the presence of general 3D structures. Solutions to this problem are commonly based on the tracking of point-like features, as they usually back-project onto viewpoint-invariant 3D features. In order to improve the robustness, the accuracy and the generality of the approach, we are interested in tracking and using a wider class of structures. In addition to points, in fact, we also simultaneously consider lines and planes. In order to be able to work on all such structures with a compact and unified formalism, we use here the Conformal Model of Geometric Algebra, which proved very powerful and flexible.
  
Line 1348: Line 1359:
   * [[https://arxiv.org/pdf/2007.04464.pdf|Deform, Cut and Tear a skinned model using Conformal Geometric Algebra]] (2020) - //Manos Kamarianakis, George Papagiannakis//   * [[https://arxiv.org/pdf/2007.04464.pdf|Deform, Cut and Tear a skinned model using Conformal Geometric Algebra]] (2020) - //Manos Kamarianakis, George Papagiannakis//
 We present a novel, integrated rigged character simulation framework in Conformal Geometric Algebra (CGA) that supports, for the first time, real-time cuts and tears, before and/or after the animation, while maintaining deformation topology. The purpose of using CGA is to lift several restrictions posed by current state-of-the-art character animation & deformation methods. Previous implementations originally required weighted matrices to perform deformations, whereas, in the current state-of-the-art, dual-quaternions handle both rotations and translations, but cannot handle dilations. CGA is a suitable extension of dual-quaternion algebra that amends these two major previous shortcomings: the need to constantly transmute between matrices and dual-quaternions as well as the inability to properly dilate a model during animation. Our CGA algorithm also provides easy interpolation and application of all deformations in each intermediate steps, all within the same geometric framework. Furthermore we also present two novel algorithms that enable cutting and tearing of the input rigged, animated model, while the output model can be further re-deformed. We present a novel, integrated rigged character simulation framework in Conformal Geometric Algebra (CGA) that supports, for the first time, real-time cuts and tears, before and/or after the animation, while maintaining deformation topology. The purpose of using CGA is to lift several restrictions posed by current state-of-the-art character animation & deformation methods. Previous implementations originally required weighted matrices to perform deformations, whereas, in the current state-of-the-art, dual-quaternions handle both rotations and translations, but cannot handle dilations. CGA is a suitable extension of dual-quaternion algebra that amends these two major previous shortcomings: the need to constantly transmute between matrices and dual-quaternions as well as the inability to properly dilate a model during animation. Our CGA algorithm also provides easy interpolation and application of all deformations in each intermediate steps, all within the same geometric framework. Furthermore we also present two novel algorithms that enable cutting and tearing of the input rigged, animated model, while the output model can be further re-deformed.
 +
 +  * [[https://www.researchgate.net/profile/Carlos-Muro/publication/339249543_Newton-Euler_Modeling_and_Control_of_a_Multi-copter_Using_Motor_Algebra_mathbfG_301G301/links/603d925f299bf1e0784d02bd/Newton-Euler-Modeling-and-Control-of-a-Multi-copter-Using-Motor-Algebra-mathbfG-3-0-1G3-0-1.pdf|Newton-Euler Modelling and Control of a Multicopter using Motor Algebra G^+_3,0,1]] (2020) - //Carlos A. Arellano-Muro, Guillermo Osuna-Gonzalez, et al//
 +In this work the dynamic model and the nonlinear control for a multi-copter have been developed using the geometric algebra framework specifically using the motor algebra G^+_3,0,1. The kinematics for the aircraft model and the dynamics based on Newton-Euler formalism are presented. Block-control technique is applied to the multi-copter model which involves super twisting control and an estimator of the internal dynamics for maneuvers away from the origin. The stability of the presented control scheme is proved. The experimental analysis shows that our non-linear controller law is able to reject external disturbances and to deal with parametric variations.
 +
 +  * [[http://i-us.ru/index.php/ius/article/download/13579/14098|Human action recognition method based on conformal geometric algebra and recurrent neural network]] (2020) - //Nguyen Nang Hung Van, Pham Minh Tuan et al//
 +The use of Conformal Geometric Algebra in order to extract features and simultaneously reduce the dimensionality of a dataset for human activity recognition using Recurrent Neural Network.
 +
 +  * [[https://arxiv.org/pdf/2107.00343.pdf|Explicit Baker-Campbell-Hausdorff-Dynkin formula for Spacetime via Geometric Algebra]] (2021) - //Joseph Wilson, Matt Visser//
 +We present a compact Baker-Campbell-Hausdorff-Dynkin formula for the composition of Lorentz transformations e^σi in the spin representation (a.k.a. Lorentz rotors) in terms of their generators σi. This formula is general to geometric algebras (a.k.a. real Clifford algebras) of dimension ≤4, naturally generalising Rodrigues' formula for rotations in R3. In particular, it applies to Lorentz rotors within the framework of Hestenes' spacetime algebra, and provides an efficient method for composing Lorentz generators.
 +
 +  * [[https://arxiv.org/pdf/2107.03771.pdf|Graded Symmetry Groups: Plane and Simple]] (2021) - //Martin Roelfs, Steven De Keninck//
 +The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a graded structure on Lie groups, which is not evident in their matrix representation. By embracing this graded structure, the invariant decomposition theorem was proven: any composition of k linearly independent reflections can be decomposed into ⌈k/2⌉ commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi-Chasles' theorem as its 3D Euclidean special case.
 +
 +  * [[https://www.pacm.princeton.edu/sites/default/files/pacm_arjunmani_0.pdf|Representing Words in a Geometric Algebra]] (2021) - //Arjun Mani//
 +In this paper we introduce and motivate geometric algebra as a better representation for word embeddings. Next we describe how to implement the geometric product and interestingly show that neural networks can learn this product. We then introduce a model that represents words as objects in this algebra and benchmark it on large corpuses; our results show some promise on traditional word embedding tasks. Thus, we lay the groundwork for further investigation of geometric algebra in word embeddings.
 +
 +  * [[https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cmu2.12188|An approach to adaptive filtering with variable step size based on geometric algebra]] (2021) - //Haiquan Wang, Yinmei He et al//
 +Recently, adaptive filtering algorithms have attracted much more attention in the field of signal processing. By studying the shortcoming of the traditional real-valued fixed step size adaptive filtering algorithm, this paper proposed the novel approach to adaptive filtering with variable step size based on Sigmoid function and geometric algebra (GA).
 +
 +  * [[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488174|A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995–2020]] (2021) - //Eduardo Bayro-Corrochano//
 +Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics, computer science, and engineering. This review presents a comprehensive study of works on Quaternion Algebra and GA applications in computer science and engineering from 1995 to 2020.
 ===== Books ===== ===== Books =====
  
 ==== Historical ==== ==== Historical ====
- 
 ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^ ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^
-| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?400}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |+| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?650}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |
 | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        | | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        |
 | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
Line 1369: Line 1400:
  
 ==== Modern ==== ==== Modern ====
- 
- 
- 
- 
 ^                                                                                                                                                                                                         ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ^ ^                                                                                                                                                                                                         ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ^
-| [[https://www.amazon.com/Space-Time-Algebra-David-Hestenes/dp/3319184121|{{:ga:space-time_algebra-hestenes.jpg?650}}]] | **Space-Time Algebra, 2nd Ed (2015)**\\ //David Hestenes//\\ This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +| [[https://www.amazon.com/Space-Time-Algebra-David-Hestenes/dp/3319184121|{{:ga:space-time_algebra-hestenes.jpg?1000}}]] | **Space-Time Algebra, 2nd Ed (2015)**\\ //David Hestenes//\\ This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 
-| [[https://www.amazon.com/Foundations-Classical-Mechanics-Fundamental-Theories/dp/0792355148|{{:ga:new_foundations_for_classical_mechanics-hestenes.jpg?100}}]] | **New Foundations for Classical Mechanics, 2nd Ed (1999)**\\ //David Hestenes//\\ This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels.                                                                                                                                                                                                                                                                                 | +| [[https://www.amazon.com/Foundations-Classical-Mechanics-Fundamental-Theories/dp/0792355148|{{:ga:new_foundations_for_classical_mechanics-hestenes.jpg?400}}]] | **New Foundations for Classical Mechanics, 2nd Ed (1999)**\\ //David Hestenes//\\ This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels.                                                                                                                                                                                                                                                                                 | 
-| [[https://www.amazon.com/Clifford-Algebra-Geometric-Calculus-Mathematics/dp/9027725616|{{:ga:clifford_algebra_to_geometric_calculus-hestenes_sobczyk.jpg?100}}]] | **Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (1984)**\\ //David Hestenes, Garret Sobczyk//\\ Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.                                                            | +| [[https://www.amazon.com/Clifford-Algebra-Geometric-Calculus-Mathematics/dp/9027725616|{{:ga:clifford_algebra_to_geometric_calculus-hestenes_sobczyk.jpg?400}}]] | **Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics (1984)**\\ //David Hestenes, Garret Sobczyk//\\ Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.                                                            | 
-| [[https://www.amazon.com/Geometric-Algebra-Physicists-Chris-Doran/dp/0521480221|{{:ga:geometric_algebra_for_physicists-doran_lasenby.jpg?100}}]] | **Geometric Algebra for Physicists (2003)**\\ //Chris Doran, Anthony Lasenby//\\ This book is a complete guide to the current state of geometric algebra with early chapters providing a self-contained introduction. Topics range from new techniques for handling rotations in arbitrary dimensions, the links between rotations, bivectors, the structure of the Lie groups, non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +| [[https://www.amazon.com/Geometric-Algebra-Physicists-Chris-Doran/dp/0521480221|{{:ga:geometric_algebra_for_physicists-doran_lasenby.jpg?400}}]] | **Geometric Algebra for Physicists (2003)**\\ //Chris Doran, Anthony Lasenby//\\ This book is a complete guide to the current state of geometric algebra with early chapters providing a self-contained introduction. Topics range from new techniques for handling rotations in arbitrary dimensions, the links between rotations, bivectors, the structure of the Lie groups, non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 
-| [[https://www.amazon.com/Geometric-Algebra-Dover-Books-Mathematics/dp/0486801551|{{:ga:geometric_algebra-artin.jpg?100}}]] | **Geometric Algebra (1957)**\\ //Emil Artin//\\ This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Geometric-Algebra-Dover-Books-Mathematics/dp/0486801551|{{:ga:geometric_algebra-artin.jpg?400}}]] | **Geometric Algebra (1957)**\\ //Emil Artin//\\ This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/History-Vector-Analysis-Evolution-Mathematics/dp/0486679101|{{:ga:a_history_of_vector_analysis-crowe.jpg?100}}]] | **A History of Vector Analysis: The Evolution of the Idea of a Vectorial System (1967)**\\ //Michael J. Crowe//\\ On October 16, 1843, Sir William Rowan Hamilton discovered quaternions and, on the very same day, presented his breakthrough to the Royal Irish Academy. Meanwhile, in a less dramatic style, a German high school teacher, Hermann Grassmann, was developing another vectorial system involving hypercomplex numbers comparable to quaternions. The creations of these two mathematicians led to other vectorial systems, most notably the system of vector analysis formulated by Josiah Willard Gibbs and Oliver Heaviside and now almost universally employed in mathematics, physics and engineering. Yet the Gibbs-Heaviside system won acceptance only after decades of debate and controversy in the latter half of the nineteenth century concerning which of the competing systems offered the greatest advantages for mathematical pedagogy and practice.                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/History-Vector-Analysis-Evolution-Mathematics/dp/0486679101|{{:ga:a_history_of_vector_analysis-crowe.jpg?400}}]] | **A History of Vector Analysis: The Evolution of the Idea of a Vectorial System (1967)**\\ //Michael J. Crowe//\\ On October 16, 1843, Sir William Rowan Hamilton discovered quaternions and, on the very same day, presented his breakthrough to the Royal Irish Academy. Meanwhile, in a less dramatic style, a German high school teacher, Hermann Grassmann, was developing another vectorial system involving hypercomplex numbers comparable to quaternions. The creations of these two mathematicians led to other vectorial systems, most notably the system of vector analysis formulated by Josiah Willard Gibbs and Oliver Heaviside and now almost universally employed in mathematics, physics and engineering. Yet the Gibbs-Heaviside system won acceptance only after decades of debate and controversy in the latter half of the nineteenth century concerning which of the competing systems offered the greatest advantages for mathematical pedagogy and practice.                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Theory-Spinors-Dover-Books-Mathematics/dp/0486640701|{{:ga:the_theory_of_spinors-cartan.jpg?100}}]] | **The Theory of Spinors (1981)**\\ //Elie Cartan//\\ The French mathematician Elie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +| [[https://www.amazon.com/Theory-Spinors-Dover-Books-Mathematics/dp/0486640701|{{:ga:the_theory_of_spinors-cartan.jpg?400}}]] | **The Theory of Spinors (1981)**\\ //Elie Cartan//\\ The French mathematician Elie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 
-| [[https://www.amazon.com/Past-Future-Gra%C3%9Fmanns-Bicentennial-Conference/dp/3034604041|{{:ga:hermann_grassmann_from_past_to_future.jpg?100}}]] | **From Past to Future: Graßmann's Work in Context: Graßmann Bicentennial Conference, September 2009 (2011)**\\ //Birkhauser//\\ On the occasion of the 200th anniversary of the birth of Hermann Graßmann (1809-1877), an interdisciplinary conference was held in Potsdam, Germany, and in Graßmann's hometown Szczecin, Poland. The idea of the conference was to present a multi-faceted picture of Graßmann, and to uncover the complexity of the factors that were responsible for his creativity. The conference demonstrated not only the very influential reception of his work at the turn of the 20th century, but also the unexpected modernity of his ideas, and their continuing development in the 21st century.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +| [[https://www.amazon.com/Past-Future-Gra%C3%9Fmanns-Bicentennial-Conference/dp/3034604041|{{:ga:hermann_grassmann_from_past_to_future.jpg?400}}]] | **From Past to Future: Graßmann's Work in Context: Graßmann Bicentennial Conference, September 2009 (2011)**\\ //Birkhauser//\\ On the occasion of the 200th anniversary of the birth of Hermann Graßmann (1809-1877), an interdisciplinary conference was held in Potsdam, Germany, and in Graßmann's hometown Szczecin, Poland. The idea of the conference was to present a multi-faceted picture of Graßmann, and to uncover the complexity of the factors that were responsible for his creativity. The conference demonstrated not only the very influential reception of his work at the turn of the 20th century, but also the unexpected modernity of his ideas, and their continuing development in the 21st century.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 
-| [[https://www.amazon.com/Grassmann-Algebra-Foundations-Exploring-Mathematica/dp/1479197637|{{:ga:grassmann_algebra_volume_1_foundations-browne.jpg?100}}]] | **Grassmann Algebra Volume 1: Foundations (2012)**\\ //John Browne//\\ Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, ... multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. +| [[https://www.amazon.com/Grassmann-Algebra-Foundations-Exploring-Mathematica/dp/1479197637|{{:ga:grassmann_algebra_volume_1_foundations-browne.jpg?400}}]] | **Grassmann Algebra Volume 1: Foundations (2012)**\\ //John Browne//\\ Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, ... multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. 
-| [[https://www.amazon.com/Linear-Geometric-Algebra-Alan-Macdonald/dp/1453854932|{{:ga:linear_and_geometric_algebra-macdonald.jpg?100}}]] | **Linear and Geometric Algebra (2011)**\\ //Alan Macdonald//\\ This textbook for the first undergraduate linear algebra course presents a unified treatment of linear algebra and geometric algebra, while covering most of the usual linear algebra topics.Geometric algebra is an extension of linear algebra. It enhances the treatment of many linear algebra topics. And geometric algebra does much more.Geometric algebra and its extension to geometric calculus unify, simplify, and generalize vast areas of mathematics that involve geometric ideas. They provide a unified mathematical language for many areas of physics, computer science, and other fields.The book can be used for self study by those comfortable with the theorem/proof style of a mathematics text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +| [[https://www.amazon.com/Linear-Geometric-Algebra-Alan-Macdonald/dp/1453854932|{{:ga:linear_and_geometric_algebra-macdonald.jpg?400}}]] | **Linear and Geometric Algebra (2011)**\\ //Alan Macdonald//\\ This textbook for the first undergraduate linear algebra course presents a unified treatment of linear algebra and geometric algebra, while covering most of the usual linear algebra topics.Geometric algebra is an extension of linear algebra. It enhances the treatment of many linear algebra topics. And geometric algebra does much more.Geometric algebra and its extension to geometric calculus unify, simplify, and generalize vast areas of mathematics that involve geometric ideas. They provide a unified mathematical language for many areas of physics, computer science, and other fields.The book can be used for self study by those comfortable with the theorem/proof style of a mathematics text.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 
-| [[https://www.amazon.com/Vector-Geometric-Calculus-Alan-Macdonald/dp/1480132454|{{:ga:vector_and_geometric_calculus-macdonald.jpg?100}}]] | **Vector and Geometric Calculus (2012)**\\ //Alan Macdonald//\\ This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. The book is a sequel to the text Linear and Geometric Algebra by the same author. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +| [[https://www.amazon.com/Vector-Geometric-Calculus-Alan-Macdonald/dp/1480132454|{{:ga:vector_and_geometric_calculus-macdonald.jpg?400}}]] | **Vector and Geometric Calculus (2012)**\\ //Alan Macdonald//\\ This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. The book is a sequel to the text Linear and Geometric Algebra by the same author. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 
-| [[https://www.amazon.com/Understanding-Geometric-Algebra-Hamilton-Grassmann/dp/1482259508|{{:ga:understanding_geometric_algebra-kanatani.jpg?100}}]] | **Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics (2015)**\\ //Kenichi Kanatani//\\ Introduces geometric algebra with an emphasis on the background mathematics of Hamilton, Grassmann, and Clifford. It shows how to describe and compute geometry for 3D modeling applications in computer graphics and computer vision. Unlike similar texts, this book first gives separate descriptions of the various algebras and then explains how they are combined to define the field of geometric algebra. It starts with 3D Euclidean geometry along with discussions as to how the descriptions of geometry could be altered if using a non-orthogonal (oblique) coordinate system. The text focuses on Hamilton’s quaternion algebra, Grassmann’s outer product algebra, and Clifford algebra that underlies the mathematical structure of geometric algebra. It also presents points and lines in 3D as objects in 4D in the projective geometry framework; explores conformal geometry in 5D, which is the main ingredient of geometric algebra; and delves into the mathematical analysis of camera imaging geometry involving circles and spheres.                                                                                                                                                                           | +| [[https://www.amazon.com/Understanding-Geometric-Algebra-Hamilton-Grassmann/dp/1482259508|{{:ga:understanding_geometric_algebra-kanatani.jpg?400}}]] | **Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics (2015)**\\ //Kenichi Kanatani//\\ Introduces geometric algebra with an emphasis on the background mathematics of Hamilton, Grassmann, and Clifford. It shows how to describe and compute geometry for 3D modeling applications in computer graphics and computer vision. Unlike similar texts, this book first gives separate descriptions of the various algebras and then explains how they are combined to define the field of geometric algebra. It starts with 3D Euclidean geometry along with discussions as to how the descriptions of geometry could be altered if using a non-orthogonal (oblique) coordinate system. The text focuses on Hamilton’s quaternion algebra, Grassmann’s outer product algebra, and Clifford algebra that underlies the mathematical structure of geometric algebra. It also presents points and lines in 3D as objects in 4D in the projective geometry framework; explores conformal geometry in 5D, which is the main ingredient of geometric algebra; and delves into the mathematical analysis of camera imaging geometry involving circles and spheres.                                                                                                                                                                           | 
-| [[https://www.amazon.com/Geometric-Algebra-Computer-Science-Revised/dp/0123749425|{{:ga:geometric_algebra_for_computer_science-dorst.jpg?100}}]] | **Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2007)**\\ //Leo Dorst,  Daniel Fontijne, Stephen Mann//\\ Until recently, all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex―often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs.                                                                                                                                                                                                                                                                                                                                                                                                                                             | +| [[https://www.amazon.com/Geometric-Algebra-Computer-Science-Revised/dp/0123749425|{{:ga:geometric_algebra_for_computer_science-dorst.jpg?400}}]] | **Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry (2007)**\\ //Leo Dorst,  Daniel Fontijne, Stephen Mann//\\ Until recently, all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex―often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs.                                                                                                                                                                                                                                                                                                                                                                                                                                             | 
-| [[https://www.amazon.com/New-Foundations-Mathematics-Geometric-Concept/dp/0817683844|{{:ga:new_foundations_in_mathematics-sobczyk.jpg?100}}]] | **New Foundations in Mathematics: The Geometric Concept of Number (2013)**\\ //Garret Sobczyk//\\ The first book of its kind uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner.                                                                                                                                                                                                                                                                                                                                                                                                            | +| [[https://www.amazon.com/New-Foundations-Mathematics-Geometric-Concept/dp/0817683844|{{:ga:new_foundations_in_mathematics-sobczyk.jpg?400}}]] | **New Foundations in Mathematics: The Geometric Concept of Number (2013)**\\ //Garret Sobczyk//\\ The first book of its kind uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner.                                                                                                                                                                                                                                                                                                                                                                                                            | 
-| [[https://www.amazon.com/Clifford-Algebras-Classical-Cambridge-Mathematics/dp/0521551773|{{:ga:clifford_algebras_and_the_classical_groups-porteous.jpg?100}}]] | **Clifford Algebras and the Classical Groups (1995)**\\ //Ian R. Porteous//\\ This book reflects the growing interest in the theory of Clifford algebras and their applications. The author has reworked his previous book on this subject, Topological Geometry, and has expanded and added material. As in the previous version, the author includes an exhaustive treatment of all the generalizations of the classical groups, as well as an excellent exposition of the classification of the conjugation anti-involution of the Clifford algebras and their complexifications. Toward the end of the book, the author introduces ideas from the theory of Lie groups and Lie algebras.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Clifford-Algebras-Classical-Cambridge-Mathematics/dp/0521551773|{{:ga:clifford_algebras_and_the_classical_groups-porteous.jpg?400}}]] | **Clifford Algebras and the Classical Groups (1995)**\\ //Ian R. Porteous//\\ This book reflects the growing interest in the theory of Clifford algebras and their applications. The author has reworked his previous book on this subject, Topological Geometry, and has expanded and added material. As in the previous version, the author includes an exhaustive treatment of all the generalizations of the classical groups, as well as an excellent exposition of the classification of the conjugation anti-involution of the Clifford algebras and their complexifications. Toward the end of the book, the author introduces ideas from the theory of Lie groups and Lie algebras.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Clifford-Algebras-Analysis-Advanced-Mathematics/dp/0849384818|{{:ga:clifford_algebras_in_analysis-ryan.jpg?100}}]] | **Clifford Algebras in Analysis and Related Topics (1995)**\\ //John Ryan//\\ Contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much more.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Clifford-Algebras-Analysis-Advanced-Mathematics/dp/0849384818|{{:ga:clifford_algebras_in_analysis-ryan.jpg?400}}]] | **Clifford Algebras in Analysis and Related Topics (1995)**\\ //John Ryan//\\ Contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much more.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Clifford-Algebra-Computational-Tool-Physicists/dp/0195098242|{{:ga:clifford_algebra_a_computational_tool_for_physicists-snygg.jpg?100}}]] | **Clifford Algebra: A Computational Tool for Physicists (1997)**\\ //John Snygg//\\ Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have also become a virtual necessity in some areas of physics, and their usefulness is expanding in other areas, such as algebraic manipulations involving Dirac matrices in quantum thermodynamics; Kaluza-Klein theories and dimensional renormalization theories; and the formation of superstring theories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Clifford-Algebra-Computational-Tool-Physicists/dp/0195098242|{{:ga:clifford_algebra_a_computational_tool_for_physicists-snygg.jpg?400}}]] | **Clifford Algebra: A Computational Tool for Physicists (1997)**\\ //John Snygg//\\ Clifford algebras have become an indispensable tool for physicists at the cutting edge of theoretical investigations. Applications in physics range from special relativity and the rotating top at one end of the spectrum, to general relativity and Dirac's equation for the electron at the other. Clifford algebras have also become a virtual necessity in some areas of physics, and their usefulness is expanding in other areas, such as algebraic manipulations involving Dirac matrices in quantum thermodynamics; Kaluza-Klein theories and dimensional renormalization theories; and the formation of superstring theories.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Approach-Differential-Geometry-Cliffords-Geometric/dp/0817682821|{{:ga:a_new_approach_to_differential_geometry_using_clifford_geometric_algebra-snygg.jpg?100}}]] | **A New Approach to Differential Geometry using Clifford's Geometric Algebra (2012)**\\ //John Snygg//\\ Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +| [[https://www.amazon.com/Approach-Differential-Geometry-Cliffords-Geometric/dp/0817682821|{{:ga:a_new_approach_to_differential_geometry_using_clifford_geometric_algebra-snygg.jpg?400}}]] | **A New Approach to Differential Geometry using Clifford's Geometric Algebra (2012)**\\ //John Snygg//\\ Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 
-| [[https://www.amazon.com/Clifford-Algebras-Spinors-Mathematical-Society/dp/0521005515|{{:ga:clifford_algebras_and_spinors-lounesto.jpg?100}}]] | **Clifford Algebras and Spinors, 2nd Ed (2001)**\\ //Pertti Lounesto//\\ The beginning chapters cover the basics: vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters, which will also interest physicists, include treatments of the quantum mechanics of the electron, electromagnetism and special relativity. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing among the Weyl, Majorana and Dirac spinors. Scalar products of spinors are categorized by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the algebraic side, Brauer/Wall groups and Witt rings are discussed, and on the analytic, Cauchy's integral formula is generalized to higher dimensions.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +| [[https://www.amazon.com/Clifford-Algebras-Spinors-Mathematical-Society/dp/0521005515|{{:ga:clifford_algebras_and_spinors-lounesto.jpg?400}}]] | **Clifford Algebras and Spinors, 2nd Ed (2001)**\\ //Pertti Lounesto//\\ The beginning chapters cover the basics: vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters, which will also interest physicists, include treatments of the quantum mechanics of the electron, electromagnetism and special relativity. A new classification of spinors is introduced, based on bilinear covariants of physical observables. This reveals a new class of spinors, residing among the Weyl, Majorana and Dirac spinors. Scalar products of spinors are categorized by involutory anti-automorphisms of Clifford algebras. This leads to the chessboard of automorphism groups of scalar products of spinors. On the algebraic side, Brauer/Wall groups and Witt rings are discussed, and on the analytic, Cauchy's integral formula is generalized to higher dimensions.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 
-| [[https://www.amazon.com/Mathematics-Computer-Graphics-Undergraduate-Science/dp/1447162897|{{:ga:mathematics_for_computer_graphics-vince.jpg?100}}]] | **Mathematics for Computer Graphics, 4th Ed (2014)**\\ //John Vince//\\ Explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +| [[https://www.amazon.com/Mathematics-Computer-Graphics-Undergraduate-Science/dp/1447162897|{{:ga:mathematics_for_computer_graphics-vince.jpg?400}}]] | **Mathematics for Computer Graphics, 4th Ed (2014)**\\ //John Vince//\\ Explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 
-| [[https://www.amazon.com/Geometric-Algebra-Algebraic-Computer-Animation/dp/1848823789|{{:ga:geometric_algebra_an_algebraic_system_for_computer_games_and_animation-vince.jpg?100}}]] | **Geometric Algebra: An Algebraic System for Computer Games and Animation (2009)**\\ //John Vince//\\ Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Geometric-Algebra-Algebraic-Computer-Animation/dp/1848823789|{{:ga:geometric_algebra_an_algebraic_system_for_computer_games_and_animation-vince.jpg?400}}]] | **Geometric Algebra: An Algebraic System for Computer Games and Animation (2009)**\\ //John Vince//\\ Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Differential-Forms-Electromagnetics-Ismo-Lindell/dp/0471648019|{{:ga:differential_forms_in_electromagnetics-lindell.jpg?100}}]] | **Differential Forms in Electromagnetics (2004)**\\ //Ismo V. Lindell//\\ An introduction to multivectors, dyadics, and differential forms for electrical engineers. While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically.  (...) Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Differential-Forms-Electromagnetics-Ismo-Lindell/dp/0471648019|{{:ga:differential_forms_in_electromagnetics-lindell.jpg?400}}]] | **Differential Forms in Electromagnetics (2004)**\\ //Ismo V. Lindell//\\ An introduction to multivectors, dyadics, and differential forms for electrical engineers. While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically.  (...) Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Understanding-Geometric-Algebra-Electromagnetic-Theory/dp/0470941634|{{:ga:understanding_geometric_algebra_for_electromagnetic_theory-arthur.jpg?100}}]] | **Understanding Geometric Algebra for Electromagnetic Theory (2011)**\\ //John W. Arthur//\\ This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison.                                                                                                                                                                                                                                                                                                                                                  | +| [[https://www.amazon.com/Understanding-Geometric-Algebra-Electromagnetic-Theory/dp/0470941634|{{:ga:understanding_geometric_algebra_for_electromagnetic_theory-arthur.jpg?400}}]] | **Understanding Geometric Algebra for Electromagnetic Theory (2011)**\\ //John W. Arthur//\\ This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison.                                                                                                                                                                                                                                                                                                                                                  | 
-| [[https://www.amazon.com/Geometric-Applications-Engineering-Geometry-Computing/dp/354089067X|{{:ga:geometric_algebra_with_applications_in_engineering-perwass.jpg?100}}]] | **Geometric Algebra with Applications in Engineering (2008)**\\ //Christian Perwass//\\ The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation.                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Geometric-Applications-Engineering-Geometry-Computing/dp/354089067X|{{:ga:geometric_algebra_with_applications_in_engineering-perwass.jpg?400}}]] | **Geometric Algebra with Applications in Engineering (2008)**\\ //Christian Perwass//\\ The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation.                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Foundations-Geometric-Algebra-Computing-Geometry/dp/3642317936|{{:ga:foundations_of_geometric_algebra_computing.jpg?100}}]] | **Foundations of Geometric Algebra Computing (2013)**\\ //Dietmar Hildenbrand//\\ The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Foundations-Geometric-Algebra-Computing-Geometry/dp/3642317936|{{:ga:foundations_of_geometric_algebra_computing.jpg?400}}]] | **Foundations of Geometric Algebra Computing (2013)**\\ //Dietmar Hildenbrand//\\ The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Classical-Geometric-Algebra-Graduate-Mathematics/dp/0821820192|{{:ga:classical_groups_and_geometric_algebra-grove.jpg?100}}]] | **Classical Groups and Geometric Algebra (2001)**\\ //Larry C. Grove//\\  The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +| [[https://www.amazon.com/Classical-Geometric-Algebra-Graduate-Mathematics/dp/0821820192|{{:ga:classical_groups_and_geometric_algebra-grove.jpg?400}}]] | **Classical Groups and Geometric Algebra (2001)**\\ //Larry C. Grove//\\  The classical groups have proved to be important in a wide variety of venues, ranging from physics to geometry and far beyond. In recent years, they have played a prominent role in the classification of the finite simple groups. This text provides a single source for the basic facts about the classical groups and also includes the required geometrical background information from the first principles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 
-| [[https://www.amazon.com/Clifford-Geometric-Applications-Mathematics-Engineering/dp/0817638687|{{:ga:clifford_geometric_algebras-baylis.jpg?100}}]] | **Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering (1999)**\\ //William Baylis//\\ The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas­ sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.                                                                                                                                                                                                                                                                                                                                          | +| [[https://www.amazon.com/Clifford-Geometric-Applications-Mathematics-Engineering/dp/0817638687|{{:ga:clifford_geometric_algebras-baylis.jpg?400}}]] | **Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering (1999)**\\ //William Baylis//\\ The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas­ sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.                                                                                                                                                                                                                                                                                                                                          | 
-| [[https://www.amazon.com/Guide-Geometric-Algebra-Practice-Dorst/dp/0857298100|{{:ga:guide_to_geometric_algebra_in_practice-dorst_lasenby.jpg?100}}]] | **Guide to Geometric Algebra in Practice (2011)**\\ //Leo Dorst, Joan Lasenby//\\ This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.                                                                                                                                                                                                                                                                                                                   | +| [[https://www.amazon.com/Guide-Geometric-Algebra-Practice-Dorst/dp/0857298100|{{:ga:guide_to_geometric_algebra_in_practice-dorst_lasenby.jpg?400}}]] | **Guide to Geometric Algebra in Practice (2011)**\\ //Leo Dorst, Joan Lasenby//\\ This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.                                                                                                                                                                                                                                                                                                                   | 
-| [[https://www.amazon.com/Quaternions-Clifford-Algebras-Relativistic-Physics/dp/3764377909|{{:ga:quaternions_clifford_algebras_and_relativistic_physics-girard.jpg?100}}]] | **Quaternions, Clifford Algebras and Relativistic Physics (2007)**\\ //Patrick R. Girard//\\ The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +| [[https://www.amazon.com/Quaternions-Clifford-Algebras-Relativistic-Physics/dp/3764377909|{{:ga:quaternions_clifford_algebras_and_relativistic_physics-girard.jpg?400}}]] | **Quaternions, Clifford Algebras and Relativistic Physics (2007)**\\ //Patrick R. Girard//\\ The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, this book uses an algebraic approach that can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. It proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism, and general relativity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 
-| [[https://www.amazon.com/Geometric-Algebra-Applications-Physics-Sabbata/dp/1584887729|{{:ga:geometric_algebra_and_applications_to_physics-sabbata.jpg?100}}]] | **Geometric Algebra and Applications to Physics (2006)**\\ //Venzo de Sabbata, Bidyut Kumar Datta//\\ Bringing geometric algebra to the mainstream of physics pedagogy, Geometric Algebra and Applications to Physics not only presents geometric algebra as a discipline within mathematical physics, but the book also shows how geometric algebra can be applied to numerous fundamental problems in physics, especially in experimental situations. This reference begins with several chapters that present the mathematical fundamentals of geometric algebra. It introduces the essential features of postulates and their underlying framework; bivectors, multivectors, and their operators; spinor and Lorentz rotations; and Clifford algebra. The book also extends some of these topics into three dimensions. Subsequent chapters apply these fundamentals to various common physical scenarios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +| [[https://www.amazon.com/Geometric-Algebra-Applications-Physics-Sabbata/dp/1584887729|{{:ga:geometric_algebra_and_applications_to_physics-sabbata.jpg?400}}]] | **Geometric Algebra and Applications to Physics (2006)**\\ //Venzo de Sabbata, Bidyut Kumar Datta//\\ Bringing geometric algebra to the mainstream of physics pedagogy, Geometric Algebra and Applications to Physics not only presents geometric algebra as a discipline within mathematical physics, but the book also shows how geometric algebra can be applied to numerous fundamental problems in physics, especially in experimental situations. This reference begins with several chapters that present the mathematical fundamentals of geometric algebra. It introduces the essential features of postulates and their underlying framework; bivectors, multivectors, and their operators; spinor and Lorentz rotations; and Clifford algebra. The book also extends some of these topics into three dimensions. Subsequent chapters apply these fundamentals to various common physical scenarios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 
-| [[https://www.amazon.com/Geometric-Computing-Clifford-Algebras-Gerald/dp/3540411984|{{:ga:geometric_computing_with_clifford_algebras-sommer.jpg?100}}]] | **Geometric Computing with Clifford Algebras (2001)**\\ //Gerald Sommer//\\ This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Geometric-Computing-Clifford-Algebras-Gerald/dp/3540411984|{{:ga:geometric_computing_with_clifford_algebras-sommer.jpg?400}}]] | **Geometric Computing with Clifford Algebras (2001)**\\ //Gerald Sommer//\\ This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Lectures-Clifford-Geometric-Algebras-Applications/dp/0817632573|{{:ga:lectures_on_clifford_geometric_algebras_and_applications-ablamowicz_sobczyk.jpg?100}}]] | **Lectures on Clifford (Geometric) Algebras and Applications (2004)**\\ //Rafal Ablamowicz, Garret Sobczyk//\\ The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +| [[https://www.amazon.com/Lectures-Clifford-Geometric-Algebras-Applications/dp/0817632573|{{:ga:lectures_on_clifford_geometric_algebras_and_applications-ablamowicz_sobczyk.jpg?400}}]] | **Lectures on Clifford (Geometric) Algebras and Applications (2004)**\\ //Rafal Ablamowicz, Garret Sobczyk//\\ The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 
-| [[https://www.amazon.com/Geometric-Algebra-Applications-Science-Engineering/dp/0817641998|{{:ga:geometric_algebra_with_applications_in_science_and_engineering-bayro_sobczyk.jpg?100}}]] | **Geometric Algebra with Applications in Science and Engineering (2001)**\\ //Eduardo Bayro-Corrochano, Garret Sobczyk//\\ The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ematics and physics.                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Geometric-Algebra-Applications-Science-Engineering/dp/0817641998|{{:ga:geometric_algebra_with_applications_in_science_and_engineering-bayro_sobczyk.jpg?400}}]] | **Geometric Algebra with Applications in Science and Engineering (2001)**\\ //Eduardo Bayro-Corrochano, Garret Sobczyk//\\ The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ematics and physics.                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Clifford-Algebras-Geometries-Application-Kinematics/dp/3658076178|{{:ga:clifford_algebras_geometric_modelling_and_chain_geometries-klawitter.jpg?100}}]] | **Clifford Algebras: Geometric Modelling and Chain Geometries with Application in Kinematics (2015)**\\ //Daniel Klawitter//\\ After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +| [[https://www.amazon.com/Clifford-Algebras-Geometries-Application-Kinematics/dp/3658076178|{{:ga:clifford_algebras_geometric_modelling_and_chain_geometries-klawitter.jpg?400}}]] | **Clifford Algebras: Geometric Modelling and Chain Geometries with Application in Kinematics (2015)**\\ //Daniel Klawitter//\\ After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 
-| [[https://www.amazon.com/Application-Geometric-Algebra-Electromagnetic-Scattering/dp/9811000883|{{:ga:application_of_geometric_algebra_to_electromagnetic_scattering-seagar.jpg?100}}]] | **Application of Geometric Algebra to Electromagnetic Scattering: The Clifford-Cauchy-Dirac Technique (2016)**\\ //Andrew Seagar//\\ This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE).  Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space.                                                                                                                                                                                                                                                                                                                                                                    | +| [[https://www.amazon.com/Application-Geometric-Algebra-Electromagnetic-Scattering/dp/9811000883|{{:ga:application_of_geometric_algebra_to_electromagnetic_scattering-seagar.jpg?400}}]] | **Application of Geometric Algebra to Electromagnetic Scattering: The Clifford-Cauchy-Dirac Technique (2016)**\\ //Andrew Seagar//\\ This work presents the Clifford-Cauchy-Dirac (CCD) technique for solving problems involving the scattering of electromagnetic radiation from materials of all kinds. It allows anyone who is interested to master techniques that lead to simpler and more efficient solutions to problems of electromagnetic scattering than are currently in use. The technique is formulated in terms of the Cauchy kernel, single integrals, Clifford algebra and a whole-field approach. This is in contrast to many conventional techniques that are formulated in terms of Green's functions, double integrals, vector calculus and the combined field integral equation (CFIE).  Whereas these conventional techniques lead to an implementation using the method of moments (MoM), the CCD technique is implemented as alternating projections onto convex sets in a Banach space.                                                                                                                                                                                                                                                                                                                                                                    | 
-| [[https://www.amazon.com/Geometric-Algebra-Computing-Engineering-Computer/dp/1849961077|{{:ga:geometric_algebra_computing-bayro_scheuermann.jpg?100}}]] | **Geometric Algebra Computing: in Engineering and Computer Science (2010)**\\ //Eduardo Bayro-Corrochano, Gerik Scheuermann//\\ This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +| [[https://www.amazon.com/Geometric-Algebra-Computing-Engineering-Computer/dp/1849961077|{{:ga:geometric_algebra_computing-bayro_scheuermann.jpg?400}}]] | **Geometric Algebra Computing: in Engineering and Computer Science (2010)**\\ //Eduardo Bayro-Corrochano, Gerik Scheuermann//\\ This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 
-| [[https://www.amazon.com/Handbook-Geometric-Computing-Applications-Neuralcomputing/dp/3540205950|{{:ga:handbook_of_geometric_computing-bayro.jpg?100}}]] | **Handbook of Geometric Computing: Applications in Pattern Recognition, Computer Vision, Neuralcomputing, and Robotics (2005)**\\ //Eduardo Bayro-Corrochano//\\ Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Handbook-Geometric-Computing-Applications-Neuralcomputing/dp/3540205950|{{:ga:handbook_of_geometric_computing-bayro.jpg?400}}]] | **Handbook of Geometric Computing: Applications in Pattern Recognition, Computer Vision, Neuralcomputing, and Robotics (2005)**\\ //Eduardo Bayro-Corrochano//\\ Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Applications-Geometric-Algebra-Computer-Engineering/dp/1461266068|{{:ga:applications_of_geometric_algebra_in_computer_science_and_engineering-dorst_doran_lasenby.jpg?100}}]] | **Applications of Geometric Algebra in Computer Science and Engineering (2002)**\\ //Leo Dorst, Chris Doran, Joan Lasenby//\\ Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Applications-Geometric-Algebra-Computer-Engineering/dp/1461266068|{{:ga:applications_of_geometric_algebra_in_computer_science_and_engineering-dorst_doran_lasenby.jpg?400}}]] | **Applications of Geometric Algebra in Computer Science and Engineering (2002)**\\ //Leo Dorst, Chris Doran, Joan Lasenby//\\ Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Operator-Calculus-Graphs-Applications-Computer/dp/1848168764|{{:ga:operator_calculus_on_graphs-schott.jpg?100}}]]                                                              | **Operator Calculus On Graphs: Theory and Applications in Computer Science (2012)**\\ //Rene Schott, G. Stacey Staples//\\ This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science. Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +| [[https://www.amazon.com/Operator-Calculus-Graphs-Applications-Computer/dp/1848168764|{{:ga:operator_calculus_on_graphs-schott.jpg?400}}]]                                                              | **Operator Calculus On Graphs: Theory and Applications in Computer Science (2012)**\\ //Rene Schott, G. Stacey Staples//\\ This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science. Presented in this book are new methods, built on the algebraic framework of Clifford algebras, for tackling important real world problems related, but not limited to, wireless communications, neural networks, electrical circuits, transportation, and the world wide web.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 
-| [[https://www.amazon.com/Multivectors-Clifford-Algebra-Electrodynamics-Jancewicz/dp/9971502909|{{:ga:multivectors_and_clifford_algebra_in_electrodynamics-jancewicz.jpg?100}}]] | **Multivectors And Clifford Algebra In Electrodynamics (1989)**\\ //Bernard Jancewicz//\\ Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space. Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources.                                                                                                                                                                                                                                                                                                                                             | +| [[https://www.amazon.com/Multivectors-Clifford-Algebra-Electrodynamics-Jancewicz/dp/9971502909|{{:ga:multivectors_and_clifford_algebra_in_electrodynamics-jancewicz.jpg?400}}]] | **Multivectors And Clifford Algebra In Electrodynamics (1989)**\\ //Bernard Jancewicz//\\ Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space. Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources.                                                                                                                                                                                                                                                                                                                                             | 
-| [[https://www.amazon.com/Clifford-Algebras-Applications-Mathematical-Physics/dp/0817641823|{{:ga:clifford_algebras_and_their_applications_in_mathematical_physics_vol1-ablamowicz.jpg?100}}]] | **Clifford Algebras and Their Applications in Mathematical Physics, Vol.1: Algebra and Physics (2000)**\\ //Rafal Ablamowicz, Bertfried Fauser//\\ The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems.                                                                                                                                                                                                                                                                                                                                                                                                                                | +| [[https://www.amazon.com/Clifford-Algebras-Applications-Mathematical-Physics/dp/0817641823|{{:ga:clifford_algebras_and_their_applications_in_mathematical_physics_vol1-ablamowicz.jpg?400}}]] | **Clifford Algebras and Their Applications in Mathematical Physics, Vol.1: Algebra and Physics (2000)**\\ //Rafal Ablamowicz, Bertfried Fauser//\\ The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems.                                                                                                                                                                                                                                                                                                                                                                                                                                | 
-| [[https://www.amazon.com/Clifford-Algebras-Applications-Mathematical-Physics/dp/0817641831|{{:ga:clifford_algebras_and_their_applications_in_mathematical_physics_vol2-ablamowicz.jpg?100}}]] | **Clifford Algebras and Their Applications in Mathematical Physics, Vol. 2: Clifford Analysis (2000)**\\ //John Ryan, Wolfgang Sproessig//\\ The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.                                                                                                                                                                                                                                                                                                                                                                                                          | +| [[https://www.amazon.com/Clifford-Algebras-Applications-Mathematical-Physics/dp/0817641831|{{:ga:clifford_algebras_and_their_applications_in_mathematical_physics_vol2-ablamowicz.jpg?400}}]] | **Clifford Algebras and Their Applications in Mathematical Physics, Vol. 2: Clifford Analysis (2000)**\\ //John Ryan, Wolfgang Sproessig//\\ The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.                                                                                                                                                                                                                                                                                                                                                                                                          | 
-| [[https://www.amazon.com/Clifford-Algebras-Spinor-Structures-Applications/dp/9048145252|{{:ga:clifford_algebras_and_spinor_structures-ablamowicz.jpg?100}}]] | **Clifford Algebras and Spinor Structures (1995)**\\ //Rafal Ablamowicz, Pertti Lounesto//\\ This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +| [[https://www.amazon.com/Clifford-Algebras-Spinor-Structures-Applications/dp/9048145252|{{:ga:clifford_algebras_and_spinor_structures-ablamowicz.jpg?400}}]] | **Clifford Algebras and Spinor Structures (1995)**\\ //Rafal Ablamowicz, Pertti Lounesto//\\ This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 
-| [[https://www.amazon.com/Quaternionic-Clifford-Calculus-Physicists-Engineers/dp/0471962007|{{:ga:quaternionic_and_clifford_calculus_for_physicists_and_engineers-gurlebeck.jpg?100}}]] | **Quaternionic and Clifford Calculus for Physicists and Engineers (1998)**\\ //Klaus Gürlebeck, Wolfgang Sprössig//\\ Quarternionic calculus covers a branch of mathematics which uses computational techniques to help solve problems from a wide variety of physical systems which are mathematically modelled in 3, 4 or more dimensions. Examples of the application areas include thermodynamics, hydrodynamics, geophysics and structural mechanics. Focusing on the Clifford algebra approach the authors have drawn together the research into quarternionic calculus to provide the non-expert or research student with an accessible introduction to the subject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +| [[https://www.amazon.com/Quaternionic-Clifford-Calculus-Physicists-Engineers/dp/0471962007|{{:ga:quaternionic_and_clifford_calculus_for_physicists_and_engineers-gurlebeck.jpg?400}}]] | **Quaternionic and Clifford Calculus for Physicists and Engineers (1998)**\\ //Klaus Gürlebeck, Wolfgang Sprössig//\\ Quarternionic calculus covers a branch of mathematics which uses computational techniques to help solve problems from a wide variety of physical systems which are mathematically modelled in 3, 4 or more dimensions. Examples of the application areas include thermodynamics, hydrodynamics, geophysics and structural mechanics. Focusing on the Clifford algebra approach the authors have drawn together the research into quarternionic calculus to provide the non-expert or research student with an accessible introduction to the subject.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 
-| [[https://www.amazon.com/Clifford-Algebras-Numeric-Symbolic-Computations/dp/1461581591|{{:ga:clifford_algebras_with_numeric_and_symbolic_computations-ablamowicz.jpg?100}}]] | **Clifford Algebras with Numeric and Symbolic Computations (1996)**\\ //Rafal Ablamowicz, Joseph Parra, Pertti Lounesto//\\ This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +| [[https://www.amazon.com/Clifford-Algebras-Numeric-Symbolic-Computations/dp/1461581591|{{:ga:clifford_algebras_with_numeric_and_symbolic_computations-ablamowicz.jpg?400}}]] | **Clifford Algebras with Numeric and Symbolic Computations (1996)**\\ //Rafal Ablamowicz, Joseph Parra, Pertti Lounesto//\\ This edited survey book consists of 20 chapters showing application of Clifford algebra in quantum mechanics, field theory, spinor calculations, projective geometry, Hypercomplex algebra, function theory and crystallography. Many examples of computations performed with a variety of readily available software programs are presented in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 
-| [[https://www.amazon.com/Quadratic-Mappings-Clifford-Algebras-Helmstetter/dp/3764386053|{{:ga:quadratic_mappings_and_clifford_algebras-helmstetter.jpg?100}}]] | **Quadratic Mappings and Clifford Algebras (2008)**\\ //Jacques Helmstetter, Artibano Micali//\\ After general properties of quadratic mappings over rings, the authors more intensely study quadratic forms, and especially their Clifford algebras. To this purpose they review the required part of commutative algebra, and they present a significant part of the theory of graded Azumaya algebras. Interior multiplications and deformations of Clifford algebras are treated with the most efficient methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Quadratic-Mappings-Clifford-Algebras-Helmstetter/dp/3764386053|{{:ga:quadratic_mappings_and_clifford_algebras-helmstetter.jpg?400}}]] | **Quadratic Mappings and Clifford Algebras (2008)**\\ //Jacques Helmstetter, Artibano Micali//\\ After general properties of quadratic mappings over rings, the authors more intensely study quadratic forms, and especially their Clifford algebras. To this purpose they review the required part of commutative algebra, and they present a significant part of the theory of graded Azumaya algebras. Interior multiplications and deformations of Clifford algebras are treated with the most efficient methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Algebraic-Theory-Spinors-Clifford-Algebras/dp/3540570632|{{:ga:the_algebraic_theory_of_spinors_and_clifford_algebras-chevalley.jpg?100}}]] | **The Algebraic Theory of Spinors and Clifford Algebras (1997)**\\ //Claude Chevalley, Pierre Cartier, Catherine Chevalley//\\ This volume is Vol. 2 of a projected series devoted to the mathematical and philosophical works of the late Claude Chevalley. It covers the main contributions by the author to the theory of spinors. Since its appearance in 1954, "The Algebraic Theory of Spinors" has been a very sought after reference. It presents the whole story of one subject in a concise and especially clear manner. The reprint of the book is supplemented by a series of lectures on Clifford Algebras given by the author in Japan at about the same time. Also included is a postface by J. P. Bourguignon describing the many uses of spinors in differential geometry developed by mathematical physicists from the 1970s to the present day. After its appearance the book was reviewed at length by Jean Dieudonné. His insightful criticism of the book is also made available to the reader in this volume.                                                                                                                                                                                                                                                                                                                                                | +| [[https://www.amazon.com/Algebraic-Theory-Spinors-Clifford-Algebras/dp/3540570632|{{:ga:the_algebraic_theory_of_spinors_and_clifford_algebras-chevalley.jpg?400}}]] | **The Algebraic Theory of Spinors and Clifford Algebras (1997)**\\ //Claude Chevalley, Pierre Cartier, Catherine Chevalley//\\ This volume is Vol. 2 of a projected series devoted to the mathematical and philosophical works of the late Claude Chevalley. It covers the main contributions by the author to the theory of spinors. Since its appearance in 1954, "The Algebraic Theory of Spinors" has been a very sought after reference. It presents the whole story of one subject in a concise and especially clear manner. The reprint of the book is supplemented by a series of lectures on Clifford Algebras given by the author in Japan at about the same time. Also included is a postface by J. P. Bourguignon describing the many uses of spinors in differential geometry developed by mathematical physicists from the 1970s to the present day. After its appearance the book was reviewed at length by Jean Dieudonné. His insightful criticism of the book is also made available to the reader in this volume.                                                                                                                                                                                                                                                                                                                                                | 
-| [[https://www.amazon.com/Faces-Maxwell-Dirac-Einstein-Equations/dp/3319276360|{{:ga:the_many_faces_of_maxwell_dirac_and_einstein_equations-rodrigues.jpg?100}}]] | **The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach (2016)**\\ //Waldyr A. Rodrigues Jr, Edmundo Capelas de Oliveira//\\ This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +| [[https://www.amazon.com/Faces-Maxwell-Dirac-Einstein-Equations/dp/3319276360|{{:ga:the_many_faces_of_maxwell_dirac_and_einstein_equations-rodrigues.jpg?400}}]] | **The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach (2016)**\\ //Waldyr A. Rodrigues Jr, Edmundo Capelas de Oliveira//\\ This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 
-| [[https://www.amazon.com/Clifford-Ergebnisse-Mathematik-Grenzgebiete-Mathematics/dp/364236215X|{{:ga:clifford_algebras_and_lie_theory-meinrenken.jpg?100}}]] | **Clifford Algebras and Lie Theory (2013)**\\ //Eckhard Meinrenken//\\ This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern-Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.                                                                                                                     | +| [[https://www.amazon.com/Clifford-Ergebnisse-Mathematik-Grenzgebiete-Mathematics/dp/364236215X|{{:ga:clifford_algebras_and_lie_theory-meinrenken.jpg?400}}]] | **Clifford Algebras and Lie Theory (2013)**\\ //Eckhard Meinrenken//\\ This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan’s famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci’s proof of the Poincaré-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern-Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo’s theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant’s structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his “Clifford algebra analogue” of the Hopf–Koszul–Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.                                                                                                                     | 
-| [[https://www.amazon.com/Introduction-Clifford-Algebras-Spinors/dp/0198782926|{{:ga:an_introduction_to_clifford_algebras_and_spinors-vaz.jpg?100}}]] | **An Introduction to Clifford Algebras and Spinors (2016)**\\ // Jayme Vaz, Roldao da Rocha//\\ This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians.                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Introduction-Clifford-Algebras-Spinors/dp/0198782926|{{:ga:an_introduction_to_clifford_algebras_and_spinors-vaz.jpg?400}}]] | **An Introduction to Clifford Algebras and Spinors (2016)**\\ // Jayme Vaz, Roldao da Rocha//\\ This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians.                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Modern-Trends-Hypercomplex-Analysis-Mathematics/dp/3319425285|{{:ga:modern_trends_in_hypercomplex_analysis-birkhauser.jpg?100}}]] | **Modern Trends in Hypercomplex Analysis (2016)**\\ //  Swanhild Bernstein, Uwe Kähler, Irene Sabadini, Franciscus Sommen (Editors)//\\ This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.                                                                                                                                                                                                                                                                                                                                                                        | +| [[https://www.amazon.com/Modern-Trends-Hypercomplex-Analysis-Mathematics/dp/3319425285|{{:ga:modern_trends_in_hypercomplex_analysis-birkhauser.jpg?400}}]] | **Modern Trends in Hypercomplex Analysis (2016)**\\ //  Swanhild Bernstein, Uwe Kähler, Irene Sabadini, Franciscus Sommen (Editors)//\\ This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.                                                                                                                                                                                                                                                                                                                                                                        | 
-| [[https://www.amazon.com/Clifford-Algebras-Introduction-Mathematical-Society/dp/1107096383|{{:ga:clifford_algebras_an_introduction-garling.jpg?100}}]] | **Clifford Algebras: An Introduction (2011)**\\ //D. J. H. Garling//\\ Clifford algebras, built up from quadratic spaces, have applications in many areas of mathematics, as natural generalizations of complex numbers and the quaternions. They are famously used in proofs of the Atiyah-Singer index theorem, to provide double covers (spin groups) of the classical groups and to generalize the Hilbert transform. They also have their place in physics, setting the scene for Maxwell's equations in electromagnetic theory, for the spin of elementary particles and for the Dirac equation. This straightforward introduction to Clifford algebras makes the necessary algebraic background - including multilinear algebra, quadratic spaces and finite-dimensional real algebras - easily accessible to research students and final-year undergraduates. The author also introduces many applications in mathematics and physics, equipping the reader with Clifford algebras as a working tool in a variety of contexts.                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Clifford-Algebras-Introduction-Mathematical-Society/dp/1107096383|{{:ga:clifford_algebras_an_introduction-garling.jpg?400}}]] | **Clifford Algebras: An Introduction (2011)**\\ //D. J. H. Garling//\\ Clifford algebras, built up from quadratic spaces, have applications in many areas of mathematics, as natural generalizations of complex numbers and the quaternions. They are famously used in proofs of the Atiyah-Singer index theorem, to provide double covers (spin groups) of the classical groups and to generalize the Hilbert transform. They also have their place in physics, setting the scene for Maxwell's equations in electromagnetic theory, for the spin of elementary particles and for the Dirac equation. This straightforward introduction to Clifford algebras makes the necessary algebraic background - including multilinear algebra, quadratic spaces and finite-dimensional real algebras - easily accessible to research students and final-year undergraduates. The author also introduces many applications in mathematics and physics, equipping the reader with Clifford algebras as a working tool in a variety of contexts.                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Standard-Quantum-Physics-Clifford-Algebra/dp/9814719862|{{:ga:standard_model_of_quantum_physics_in_clifford_algebra-daviau.jpg?100}}]] | **The Standard Model of Quantum Physics in Clifford Algebra (2015)**\\ //Claude Daviau, Jacques Bertrand//\\ We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl*_3, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +| [[https://www.amazon.com/Standard-Quantum-Physics-Clifford-Algebra/dp/9814719862|{{:ga:standard_model_of_quantum_physics_in_clifford_algebra-daviau.jpg?400}}]] | **The Standard Model of Quantum Physics in Clifford Algebra (2015)**\\ //Claude Daviau, Jacques Bertrand//\\ We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl*_3, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 
-| [[https://www.amazon.com/lunification-mathematiques-algebresgeometriques-algebrique-informatique/dp/2746238381|{{:ga:lunification_des_mathematiques-parrochia.jpg?100}}]] | **L'unification des mathématiques: algèbres géométriques, géométrie algébrique et philosophie de Langlands (2012)**\\ //Daniel Parrochia, Artibano Micali, Pierre Anglès//\\ La pensée mathématique offre un panorama impressionnant de recherches dans les multiples directions dessinées par les réorganisations successives que la matière a connues. Cet ouvrage porte un éclairage philosophique et historique sur certains développements qui donne un sens aux transformations subies par la pensée mathématique au cours du temps pour actualiser le portrait déjà ancien de "l'unité des mathématiques". Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.                                                                                                                                                       | +| [[https://www.amazon.com/lunification-mathematiques-algebresgeometriques-algebrique-informatique/dp/2746238381|{{:ga:lunification_des_mathematiques-parrochia.jpg?400}}]] | **L'unification des mathématiques: algèbres géométriques, géométrie algébrique et philosophie de Langlands (2012)**\\ //Daniel Parrochia, Artibano Micali, Pierre Anglès//\\ La pensée mathématique offre un panorama impressionnant de recherches dans les multiples directions dessinées par les réorganisations successives que la matière a connues. Cet ouvrage porte un éclairage philosophique et historique sur certains développements qui donne un sens aux transformations subies par la pensée mathématique au cours du temps pour actualiser le portrait déjà ancien de "l'unité des mathématiques". Deux mouvements symétriques d'unification se sont produits en mathématiques. Le premier est l'aboutissement du long chemin qui, depuis les Grecs, a tendu à résoudre l'opposition de la géométrie et de l'arithmétique, puis de la géométrie et de l'algèbre. Le second mode d'unification date de la fin des années 1960. Via la géométrie algébrique, il tend à reconstruire l'ensemble des mathématiques sur la base des correspondances de Langlands, lesquelles résorbent intégralement l'opposition de l'algèbre et de l'analyse, et constituent un fabuleux dictionnaire pour la physique de demain.                                                                                                                                                       | 
-| [[http://www.lulu.com/shop/sergei-winitzki/linear-algebra-via-exterior-products/paperback/product-6214034.html|{{:ga:linear_algebra_via_exterior_products-winitzki.jpg?100}}]] | ** Linear Algebra via Exterior Products (2010)**\\ //Sergei Winitzki//\\ This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +| [[http://www.lulu.com/shop/sergei-winitzki/linear-algebra-via-exterior-products/paperback/product-6214034.html|{{:ga:linear_algebra_via_exterior_products-winitzki.jpg?400}}]] | ** Linear Algebra via Exterior Products (2010)**\\ //Sergei Winitzki//\\ This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 
-| [[https://www.amazon.com/Road-Reality-Complete-Guide-Universe/dp/0679776311|{{:ga:the_road_to_reality-penrose.jpg?100}}]]                                                                               | **The Road to Reality: A Complete Guide to the Laws of the Universe (2004)**\\ //Roger Penrose//\\ Roger Penrose presents the only comprehensive and comprehensible account of the physics of the universe. From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Road-Reality-Complete-Guide-Universe/dp/0679776311|{{:ga:the_road_to_reality-penrose.jpg?400}}]]                                                                               | **The Road to Reality: A Complete Guide to the Laws of the Universe (2004)**\\ //Roger Penrose//\\ Roger Penrose presents the only comprehensive and comprehensible account of the physics of the universe. From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/How-Schrodingers-Cat-Escaped-Box/dp/9814635197|{{:ga:how_schrodinger_cat_escaped_the_box-rowlands.jpg?100}}]] | **How Schrodinger's Cat Escaped the Box (2015)**\\ //Peter Rowlands//\\ This book attempts to explain the core of physics, the origin of everything and anything. It explains why physics at the most fundamental level, and especially quantum mechanics, has moved away from naive realism towards abstraction, and how this means that we can begin to answer some of the most fundamental questions which trouble us all, about space, time, matter, etc. It provides an original approach based on symmetry which will be of interest to professionals as well as lay people.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +| [[https://www.amazon.com/How-Schrodingers-Cat-Escaped-Box/dp/9814635197|{{:ga:how_schrodinger_cat_escaped_the_box-rowlands.jpg?400}}]] | **How Schrodinger's Cat Escaped the Box (2015)**\\ //Peter Rowlands//\\ This book attempts to explain the core of physics, the origin of everything and anything. It explains why physics at the most fundamental level, and especially quantum mechanics, has moved away from naive realism towards abstraction, and how this means that we can begin to answer some of the most fundamental questions which trouble us all, about space, time, matter, etc. It provides an original approach based on symmetry which will be of interest to professionals as well as lay people.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 
-| [[https://www.amazon.com/Foundations-Game-Engine-Development-Mathematics/dp/0985811749|{{:ga:foundations_of_game_engine_development-lengyel.jpg?100}}]] | **Foundations of Game Engine Development, Volume 1: Mathematics (2016)**\\ //Eric Lengyel//\\ The goal of this project is to create a new textbook that provides a detailed introduction to the mathematics used by modern game engine programmers. (...) One example of an important topic missing from the existing literature is Grassmann algebra. Ever since I began giving conference presentations on this topic in 2012, I have been frequently asked whether there is a book that provides a thorough and intuitive discussion of Grassmann algebra (or the related topic of geometric algebra) in the context of game development and computer graphics. I don't believe that there is, and I'd like to take the opportunity to fill this void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +| [[https://www.amazon.com/Foundations-Game-Engine-Development-Mathematics/dp/0985811749|{{:ga:foundations_of_game_engine_development-lengyel.jpg?400}}]] | **Foundations of Game Engine Development, Volume 1: Mathematics (2016)**\\ //Eric Lengyel//\\ The goal of this project is to create a new textbook that provides a detailed introduction to the mathematics used by modern game engine programmers. (...) One example of an important topic missing from the existing literature is Grassmann algebra. Ever since I began giving conference presentations on this topic in 2012, I have been frequently asked whether there is a book that provides a thorough and intuitive discussion of Grassmann algebra (or the related topic of geometric algebra) in the context of game development and computer graphics. I don't believe that there is, and I'd like to take the opportunity to fill this void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 
-| [[https://www.amazon.com/Foundations-Game-Engine-Development-Rendering/dp/0985811757|{{:ga:foundations_of_game_engine_development2-lengyel.jpg?100}}]] | **Foundations of Game Engine Development, Volume 2: Rendering (2019)**\\ //Eric Lengyel//\\ This second volume in the Foundations of Game Engine Development series explores the vast subject of real-time rendering in modern game engines. The book provides a detailed introduction to color science, world structure, projections, shaders, lighting, shadows, fog, and visibility methods. This is followed by extensive discussions of a variety of advanced rendering techniques that include volumetric effects, atmospheric shadowing, ambient occlusion, motion blur, and isosurface extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +| [[https://www.amazon.com/Foundations-Game-Engine-Development-Rendering/dp/0985811757|{{:ga:foundations_of_game_engine_development2-lengyel.jpg?400}}]] | **Foundations of Game Engine Development, Volume 2: Rendering (2019)**\\ //Eric Lengyel//\\ This second volume in the Foundations of Game Engine Development series explores the vast subject of real-time rendering in modern game engines. The book provides a detailed introduction to color science, world structure, projections, shaders, lighting, shadows, fog, and visibility methods. This is followed by extensive discussions of a variety of advanced rendering techniques that include volumetric effects, atmospheric shadowing, ambient occlusion, motion blur, and isosurface extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 
-| [[https://www.amazon.com/Invariant-Algebras-Geometric-Reasoning-Hongbo/dp/9812708081|{{:ga:invariant_algebras_and_geometric_reasoning-li.jpg?100}}]] | **Invariant Algebras And Geometric Reasoning (2008)**\\ //Hongbo Li//\\ The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras Cayley bracket algebra, conformal geometric algebra, and null bracket algebra for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing.                                                                                                                                                                                                                                                                                                                                                                                                                                              | +| [[https://www.amazon.com/Invariant-Algebras-Geometric-Reasoning-Hongbo/dp/9812708081|{{:ga:invariant_algebras_and_geometric_reasoning-li.jpg?400}}]] | **Invariant Algebras And Geometric Reasoning (2008)**\\ //Hongbo Li//\\ The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras Cayley bracket algebra, conformal geometric algebra, and null bracket algebra for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 
-| [[https://www.amazon.com/Code-Generation-Geometric-Algebra-Abstractions/dp/3330804653|{{:ga:code_generation_for_geometric_algebra-eid.jpg?100}}]] | **Code Generation for Geometric Algebra: Combining Geometric, Algebraic, and Software Abstractions for Scientific Computations (2016)**\\ //Ahmad Hosny Eid//\\ Geometry is an essential part of almost every solution to problems in computer science and engineering. The process of manually creating geometry-enabled software for representing and processing geometric data is tedious and error-prone. The use of automatic code generators for such process is more suitable, especially for low-dimensional geometric problems. Such problems can be commonly found in computer graphics, computer vision, robotics, and many other fields of application. A mathematical algebraic system with special characteristics must be used as the base of the code transformations required for final code generation. Geometric Algebra (GA) is one of the most suitable algebraic systems for such task. This work describes the design and use of one such GA-based prototype code generation system: GMac.                                                                                                                                                                                                                                                                                                                                                                   | +| [[https://www.amazon.com/Code-Generation-Geometric-Algebra-Abstractions/dp/3330804653|{{:ga:code_generation_for_geometric_algebra-eid.jpg?400}}]] | **Code Generation for Geometric Algebra: Combining Geometric, Algebraic, and Software Abstractions for Scientific Computations (2016)**\\ //Ahmad Hosny Eid//\\ Geometry is an essential part of almost every solution to problems in computer science and engineering. The process of manually creating geometry-enabled software for representing and processing geometric data is tedious and error-prone. The use of automatic code generators for such process is more suitable, especially for low-dimensional geometric problems. Such problems can be commonly found in computer graphics, computer vision, robotics, and many other fields of application. A mathematical algebraic system with special characteristics must be used as the base of the code transformations required for final code generation. Geometric Algebra (GA) is one of the most suitable algebraic systems for such task. This work describes the design and use of one such GA-based prototype code generation system: GMac.                                                                                                                                                                                                                                                                                                                                                                   | 
-| [[http://www.xtec.cat/~rgonzal1/treatise2.htm|{{:ga:treatise_of_plane_geometry_through_geometric_algebra-gonzalez-calvet.jpg?100}}]] | **Treatise of Plane Geometry through Geometric Algebra (2007)**\\ //Ramon González Calvet//\\ The Clifford-Grassman Geometric Algebra is applied to solve geometric equations, which are like the algebraic equations but containing geometric (vector) unknowns instead of real quantities. The unique way to solve these kind of equations is by using an associative algebra of vectors, the Clifford-Grassmann Geometric Algebra. Using the CGGA we have the freedom of transposition and isolation of any geometric unknown in a geometric equation. Then the typical problems and theorems of geometry, which have been hardly proved till now by means of synthetic methods, are more easily solved through the CGGA. On the other hand, the formulas obtained from the CGGA can immediately be written in Cartesian coordinates, giving a very useful service for programming computer applications, as in the case of the notable points of a triangle.                                                                                                                                                                                                                                                                                                                                                                                                                    | +| [[http://www.xtec.cat/~rgonzal1/treatise2.htm|{{:ga:treatise_of_plane_geometry_through_geometric_algebra-gonzalez-calvet.jpg?400}}]] | **Treatise of Plane Geometry through Geometric Algebra (2007)**\\ //Ramon González Calvet//\\ The Clifford-Grassman Geometric Algebra is applied to solve geometric equations, which are like the algebraic equations but containing geometric (vector) unknowns instead of real quantities. The unique way to solve these kind of equations is by using an associative algebra of vectors, the Clifford-Grassmann Geometric Algebra. Using the CGGA we have the freedom of transposition and isolation of any geometric unknown in a geometric equation. Then the typical problems and theorems of geometry, which have been hardly proved till now by means of synthetic methods, are more easily solved through the CGGA. On the other hand, the formulas obtained from the CGGA can immediately be written in Cartesian coordinates, giving a very useful service for programming computer applications, as in the case of the notable points of a triangle.                                                                                                                                                                                                                                                                                                                                                                                                                    | 
-| [[https://www.amazon.com/Modern-Mathematics-Applications-Computer-Graphics/dp/9814449326|{{:ga:modern_mathematics_and_applications_in_computer_graphics_and_vision-guo.jpg?100}}]] | **Modern Mathematics and Applications in Computer Graphics and Vision (2014)**\\ //Hongyu Guo//\\ Presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts: Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +| [[https://www.amazon.com/Modern-Mathematics-Applications-Computer-Graphics/dp/9814449326|{{:ga:modern_mathematics_and_applications_in_computer_graphics_and_vision-guo.jpg?400}}]] | **Modern Mathematics and Applications in Computer Graphics and Vision (2014)**\\ //Hongyu Guo//\\ Presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts: Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 
-| [[http://www.morikita.co.jp/books/book/2745|{{:ga:geometric_algebra-kanaya.jpg?100}}]]                                                                                                                  | **幾何学と代数系 Geometric Algebra (2014)**\\ //金谷 健一//\\ アメリカの物理学者ヘステネスを中心に提唱された「幾何学的代数」(geometric algebra) は,幾何学に古典的な代数系を対応させる手法であり,現在,物理学や工学のさまざまな分野で関心が寄せられている.本書は,この幾何学的代数の和書初となる入門書である.まず,背景をなすハミルトン代数,グラスマン代数,クリフォード代数を初歩からていねいに解説しているため,初学者でも自然に幾何学的代数の考え方を学ぶことができる.また,現代数学とのつながりも随所に見せることで,より深い理解が得られるようになっている.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +| [[http://www.morikita.co.jp/books/book/2745|{{:ga:geometric_algebra-kanaya.jpg?400}}]]                                                                                                                  | **幾何学と代数系 Geometric Algebra (2014)**\\ //金谷 健一//\\ アメリカの物理学者ヘステネスを中心に提唱された「幾何学的代数」(geometric algebra) は,幾何学に古典的な代数系を対応させる手法であり,現在,物理学や工学のさまざまな分野で関心が寄せられている.本書は,この幾何学的代数の和書初となる入門書である.まず,背景をなすハミルトン代数,グラスマン代数,クリフォード代数を初歩からていねいに解説しているため,初学者でも自然に幾何学的代数の考え方を学ぶことができる.また,現代数学とのつながりも随所に見せることで,より深い理解が得られるようになっている.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 
-| [[https://www.amazon.com/Exterior-Algebras-Elementary-Tribute-Grassmanns/dp/1785482378|{{:ga:exterior_algebras-pavan.jpg?100}}]] | **Exterior Algebras: Elementary Tribute to Grassmann's Ideas (2017)**\\ //Vincent Pavan//\\ Provides the theoretical basis for exterior computations. It first addresses the important question of constructing (pseudo)-Euclidian Grassmmann's algebras. Then, it shows how the latter can be used to treat a few basic, though significant, questions of linear algebra, such as co-linearity, determinant calculus, linear systems analyzing, volumes computations, invariant endomorphism considerations, skew-symmetric operator studies and decompositions, and Hodge conjugation, amongst others. Presents a self-contained guide that does not require any specific algebraic background. Includes numerous examples and direct applications that are suited for beginners.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +| [[https://www.amazon.com/Exterior-Algebras-Elementary-Tribute-Grassmanns/dp/1785482378|{{:ga:exterior_algebras-pavan.jpg?400}}]] | **Exterior Algebras: Elementary Tribute to Grassmann's Ideas (2017)**\\ //Vincent Pavan//\\ Provides the theoretical basis for exterior computations. It first addresses the important question of constructing (pseudo)-Euclidian Grassmmann's algebras. Then, it shows how the latter can be used to treat a few basic, though significant, questions of linear algebra, such as co-linearity, determinant calculus, linear systems analyzing, volumes computations, invariant endomorphism considerations, skew-symmetric operator studies and decompositions, and Hodge conjugation, amongst others. Presents a self-contained guide that does not require any specific algebraic background. Includes numerous examples and direct applications that are suited for beginners.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 
-| [[https://www.amazon.com/dp/331990664X|{{:ga:a_geometric_algebra_invitation-lavor_xambo.jpg?100}}]] | **A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry (2018)**\\ //Carlile Lavor, Sebastià Xambó-Descamps//\\ This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +| [[https://www.amazon.com/dp/331990664X|{{:ga:a_geometric_algebra_invitation-lavor_xambo.jpg?400}}]] | **A Geometric Algebra Invitation to Space-Time Physics, Robotics and Molecular Geometry (2018)**\\ //Carlile Lavor, Sebastià Xambó-Descamps//\\ This book offers a gentle introduction to key elements of Geometric Algebra, along with their applications in Physics, Robotics and Molecular Geometry. Major applications covered are the physics of space-time, including Maxwell electromagnetism and the Dirac equation; robotics, including formulations for the forward and inverse kinematics and an overview of the singularity problem for serial robots; and molecular geometry, with 3D-protein structure calculations using NMR data. The book is primarily intended for graduate students and advanced undergraduates in related fields, but can also benefit professionals in search of a pedagogical presentation of these subjects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 
-| [[https://www.amazon.com/dp/3319748289|{{:ga:geometric-algebra-applications_vol_i-bayro.jpg?100}}]] | **Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing (2018)**\\ //Eduardo Bayro-Corrochano//\\ The goal is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/3319748289|{{:ga:geometric-algebra-applications_vol_i-bayro.jpg?400}}]] | **Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing (2018)**\\ //Eduardo Bayro-Corrochano//\\ The goal is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
-| [[https://www.amazon.com/dp/1498748384|{{:ga:introduction_to_geometric_algebra_computing-hildenbrand.jpg?100}}]] | **Introduction to Geometric Algebra Computing (Computer Vision) (2018)**\\ //Dietmar Hildenbrand//\\ This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/3030349764|{{:ga:geometric-algebra-applications_vol_ii-bayro.jpg?400}}]] | **Geometric Algebra Applications Vol. II: Robot Modelling and Control (2020)**\\ //Eduardo Bayro-Corrochano//\\ This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric algebra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides examples to help readers learn how to compute using geometric entities and geometric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltonians equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum computing, robotics and control engineering using the geometric algebra framework.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
-| [[https://www.amazon.com/dp/3319946366|{{:ga:imaginary_mathematics_for_computer_science-vince.jpg?100}}]] | **Imaginary Mathematics for Computer Science (2018)**\\ //John Vince//\\ The imaginary unit //i// has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, Rene Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, //i// has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/1498748384|{{:ga:introduction_to_geometric_algebra_computing-hildenbrand.jpg?400}}]] | **Introduction to Geometric Algebra Computing (Computer Vision) (2018)**\\ //Dietmar Hildenbrand//\\ This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/dp/1498738915|{{:ga:handbook_of_geometric_constraint_systems_principles-crc.jpg?100}}]] | **Handbook of Geometric Constraint Systems Principles (2018)**\\ //Meera Sitharam, Audrey St. John, Jessica Sidman//\\ Entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/3319946366|{{:ga:imaginary_mathematics_for_computer_science-vince.jpg?400}}]] | **Imaginary Mathematics for Computer Science (2018)**\\ //John Vince//\\ The imaginary unit //i// has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, Rene Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, //i// has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/dp/0815378688|{{:ga:neural_networks_for_robotics-crc.jpg?100}}]] | **Neural Networks for Robotics: An Engineering Perspective (2018)**\\ //Nancy Arana-Daniel, Alma Y. Alanis, Carlos Lopez-Franco//\\ The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/1498738915|{{:ga:handbook_of_geometric_constraint_systems_principles-crc.jpg?400}}]] | **Handbook of Geometric Constraint Systems Principles (2018)**\\ //Meera Sitharam, Audrey St. John, Jessica Sidman//\\ Entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Introduction-Theoretical-Kinematics-mathematics-movement/dp/0978518039|{{:ga:introduction_to_theoretical_kinematics-mccarthy.jpg?100}}]] | **Introduction to Theoretical Kinematics: The mathematics of movement (2018)**\\ //J. Michael McCarthy//\\ An introduction to the mathematics used to model the articulated movement of mechanisms, machines, robots, and human and animal skeletons. Its concise and readable format emphasizes the similarity of the mathematics for planar, spherical and spatial movement. A modern approach introduces Lie groups and algebras and uses the theory of multivectors and Clifford algebras to clarify the construction of screws and dual quaternions. The pursuit of a unified presentation has led to a format in which planar, spherical, and spatial mechanisms are all studied in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/dp/0815378688|{{:ga:neural_networks_for_robotics-crc.jpg?400}}]] | **Neural Networks for Robotics: An Engineering Perspective (2018)**\\ //Nancy Arana-Daniel, Alma Y. Alanis, Carlos Lopez-Franco//\\ The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Real-Spinorial-Groups-Mathematical-SpringerBriefs/dp/3030004031|{{:ga:real_spinorial_groups-xambo.jpg?100}}]] | **Real Spinorial Groups: A Short Mathematical Introduction (2018)**\\ //Sebastià Xambó-Descamps//\\ This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry and how they relate to the group of isometries of that geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Introduction-Theoretical-Kinematics-mathematics-movement/dp/0978518039|{{:ga:introduction_to_theoretical_kinematics-mccarthy.jpg?400}}]] | **Introduction to Theoretical Kinematics: The mathematics of movement (2018)**\\ //J. Michael McCarthy//\\ An introduction to the mathematics used to model the articulated movement of mechanisms, machines, robots, and human and animal skeletons. Its concise and readable format emphasizes the similarity of the mathematics for planar, spherical and spatial movement. A modern approach introduces Lie groups and algebras and uses the theory of multivectors and Clifford algebras to clarify the construction of screws and dual quaternions. The pursuit of a unified presentation has led to a format in which planar, spherical, and spatial mechanisms are all studied in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Topics-Clifford-Analysis-Wolfgang-Mathematics/dp/3030238539|{{:ga:topics_in_clifford_analysis-bernstein.jpg?100}}]] | **Topics in Clifford Analysis: Special Volume in Honor of Wolfgang Sprößig (2019)**\\ // Swanhild Bernstein (Editor)//\\ Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprößig's work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprößig throughout his career.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Real-Spinorial-Groups-Mathematical-SpringerBriefs/dp/3030004031|{{:ga:real_spinorial_groups-xambo.jpg?400}}]] | **Real Spinorial Groups: A Short Mathematical Introduction (2018)**\\ //Sebastià Xambó-Descamps//\\ This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry and how they relate to the group of isometries of that geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Geometric-Multivector-Analysis-Birkh%C3%A4user-Lehrb%C3%BCcher/dp/3030314103|{{:ga:geometric_multivector_analysis-rosen.jpg?100}}]] | **Geometric Multivector Analysis: From Grassmann to Dirac (2019)**\\ // Andreas Rosén//\\ Presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of Marcel Riesz and Lars Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. Also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Topics-Clifford-Analysis-Wolfgang-Mathematics/dp/3030238539|{{:ga:topics_in_clifford_analysis-bernstein.jpg?400}}]] | **Topics in Clifford Analysis: Special Volume in Honor of Wolfgang Sprößig (2019)**\\ // Swanhild Bernstein (Editor)//\\ Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprößig's work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprößig throughout his career.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Advanced-Calculus-Fundamentals-Carlos-Polanco/dp/9811415072|{{:ga:advanced_calculus-polanco.jpg?100}}]] | **Advanced Calculus - Fundamentals of Mathematics (2019)**\\ // Carlos Polanco//\\ Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations.This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms.Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Geometric-Multivector-Analysis-Birkh%C3%A4user-Lehrb%C3%BCcher/dp/3030314103|{{:ga:geometric_multivector_analysis-rosen.jpg?400}}]] | **Geometric Multivector Analysis: From Grassmann to Dirac (2019)**\\ // Andreas Rosén//\\ Presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of Marcel Riesz and Lars Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. Also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Geometric-Multiplication-Vectors-Introduction-Mathematics/dp/3030017559|{{:ga:geometric_multiplication_of_vectors-josipovic.jpg?100}}]] | **Geometric Multiplication of Vectors: An Introduction to Geometric Algebra in Physics (2019)**\\ // Miroslav Josipović//\\ Enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +| [[https://www.amazon.com/Advanced-Calculus-Fundamentals-Carlos-Polanco/dp/9811415072|{{:ga:advanced_calculus-polanco.jpg?400}}]] | **Advanced Calculus - Fundamentals of Mathematics (2019)**\\ // Carlos Polanco//\\ Vector calculus is an essential mathematical tool for performing mathematical analysis of physical and natural phenomena. It is employed in advanced applications in the field of engineering and computer simulations.This textbook covers the fundamental requirements of vector calculus in curricula for college students in mathematics and engineering programs. Chapters start from the basics of vector algebra, real valued functions, different forms of integrals, geometric algebra and the various theorems relevant to vector calculus and differential forms.Readers will find a concise and clear study of vector calculus, along with several examples, exercises, and a case study in each chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
-| [[https://www.amazon.com/Clifford-Algebras-Zeons-Geometry-Combinatorics/dp/9811202575|{{:ga:clifford_algebras_and_zeons-staples.jpg?100}}]] | **Clifford Algebras And Zeons: Geometry to Combinatorics and Beyond (2020)**\\ // George Stacey Staples//\\ Clifford algebras have many well-known applications in physics, engineering, and computer graphics. Zeon algebras are subalgebras of Clifford algebras whose combinatorial properties lend them to graph-theoretic applications such as enumerating minimal cost paths in dynamic networks. This book provides a foundational working knowledge of zeon algebras, their properties, and their potential applications in an increasingly technological world. As the first textbook to explore algebraic and combinatorial properties of zeon algebras in depth, it is suitable for interdisciplinary study in analysis, algebra, and combinatorics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |+| [[https://www.amazon.com/Geometric-Multiplication-Vectors-Introduction-Mathematics/dp/3030017559|{{:ga:geometric_multiplication_of_vectors-josipovic.jpg?400}}]] | **Geometric Multiplication of Vectors: An Introduction to Geometric Algebra in Physics (2019)**\\ // Miroslav Josipović//\\ Enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
 +| [[https://www.amazon.com/dp/1704596629|{{:ga:matrix-gateway-to-geometric-algebra_sobczyk.jpg?400}}]] | **Matrix Gateway to Geometric Algebra, Spacetime and Spinors (2019)**\\ // Garret Sobczyk//\\ Geometric algebra has been presented in many different guises since its invention by William Kingdon Clifford shortly before his death in 1879. In this book we fully integrate the ideas of geometric algebra directly into the fabric of matrix linear algebra. A geometric matrix is a real or complex matrix which is identified with a unique geometric number. The matrix product of two geometric matrices is just the product of the corresponding geometric numbers. Any equation can be either interpreted as a matrix equation or an equation in geometric algebra, thus fully unifying the two languages. The first 6 chapters provide an introduction to geometric algebra, and the classification of all such algebras. The last 3 chapters explore more advanced topics in the application of geometric algebras to Pauli and Dirac spinors, special relativity, Maxwell’s equations, quaternions, split quaternions, and group manifolds. They are included to highlight the great variety of topics that are imbued with new geometric insight when expressed in geometric algebra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 
 +| [[https://www.amazon.com/Clifford-Algebras-Zeons-Geometry-Combinatorics/dp/9811202575|{{:ga:clifford_algebras_and_zeons-staples.jpg?400}}]] | **Clifford Algebras And Zeons: Geometry to Combinatorics and Beyond (2020)**\\ // George Stacey Staples//\\ Clifford algebras have many well-known applications in physics, engineering, and computer graphics. Zeon algebras are subalgebras of Clifford algebras whose combinatorial properties lend them to graph-theoretic applications such as enumerating minimal cost paths in dynamic networks. This book provides a foundational working knowledge of zeon algebras, their properties, and their potential applications in an increasingly technological world. As the first textbook to explore algebraic and combinatorial properties of zeon algebras in depth, it is suitable for interdisciplinary study in analysis, algebra, and combinatorics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  
geometric_algebra.txt · Last modified: 2023/12/30 00:23 by pbk

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki