User Tools

Site Tools


geometric_algebra

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
geometric_algebra [2021/10/20 07:50] – [Articles] pbkgeometric_algebra [2023/11/23 13:10] – [Historical] pbk
Line 115: Line 115:
  
   * [[http://www.cgs-network.org/cgi20|ENGAGE 2020]] (2020) - Empowering Novel Geometric Algebra for Graphics & Engineering Workshop, CGI 2020, Geneva (Switzerland).   * [[http://www.cgs-network.org/cgi20|ENGAGE 2020]] (2020) - Empowering Novel Geometric Algebra for Graphics & Engineering Workshop, CGI 2020, Geneva (Switzerland).
 +
 +  * [[https://bivector.net/game2023.html|GAME2023 - Geometric Algebra Mini Event]] (2023) - DAE - Kortrijk, Belgium.
 ==== Book companion ==== ==== Book companion ====
  
Line 278: Line 280:
   * [[http://isites.harvard.edu/fs/docs/icb.topic1048774.files/clif_mein.pdf|Clifford algebras and Lie groups]] {{ga:clif_mein.pdf|(local)}}- //Eckhard Meinrenken//, University of Toronto.   * [[http://isites.harvard.edu/fs/docs/icb.topic1048774.files/clif_mein.pdf|Clifford algebras and Lie groups]] {{ga:clif_mein.pdf|(local)}}- //Eckhard Meinrenken//, University of Toronto.
   * [[https://ocw.mit.edu/resources/res-8-001-applied-geometric-algebra-spring-2009|Applied Geometric Algebra]] (2009) - //László Tisza//, MIT OpenCourseWare.   * [[https://ocw.mit.edu/resources/res-8-001-applied-geometric-algebra-spring-2009|Applied Geometric Algebra]] (2009) - //László Tisza//, MIT OpenCourseWare.
 +  * [[https://www.cefns.nau.edu/~schulz/grassmann.pdf|Theory and application of Grassmann Algebra]] (2011) - //William C. Schulz//, Northern Arizona University.
   * [[https://lyseo.edu.ouka.fi/cms7/sites/default/files/geometric_algebra-tl.pdf|What is geometric algebra?]] (2016) - //Teuvo Laurinolli//, Oulun Lyseon.   * [[https://lyseo.edu.ouka.fi/cms7/sites/default/files/geometric_algebra-tl.pdf|What is geometric algebra?]] (2016) - //Teuvo Laurinolli//, Oulun Lyseon.
   * [[https://www.zatlovac.eu/lecturenotes/GAIntroLagape.pdf|Geometric Algebra and Calculus: Unified Language for Mathematics and Physics]] (2018) - //Vaclav Zatloukal//, Czech Technical University in Prague.   * [[https://www.zatlovac.eu/lecturenotes/GAIntroLagape.pdf|Geometric Algebra and Calculus: Unified Language for Mathematics and Physics]] (2018) - //Vaclav Zatloukal//, Czech Technical University in Prague.
   * [[https://dspace.library.uu.nl/bitstream/handle/1874/383367/IntroductionToGeometricAlgebraV2.pdf|Introduction to Geometric Algebra, a powerful tool for mathematics and physics]] (2019) - //Denis Lamaker//, Universiteit Utrecht.   * [[https://dspace.library.uu.nl/bitstream/handle/1874/383367/IntroductionToGeometricAlgebraV2.pdf|Introduction to Geometric Algebra, a powerful tool for mathematics and physics]] (2019) - //Denis Lamaker//, Universiteit Utrecht.
 +  * [[https://mattferraro.dev/posts/geometric-algebra|What is the Inverse of a Vector?]] (2021) - //Matt Ferraro//.
  
 ===== Videos ===== ===== Videos =====
Line 318: Line 322:
   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.   * [[https://www.youtube.com/watch?v=tX4H_ctggYo|SIGGRAPH 2019: Geometric Algebra for Computer Graphics]] - //Charles Gunn// and //Steven De Keninck//.
   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjzcQ4eCVAntETNNVD2d5S79|GAME2020 - Geometric Algebra Mini Event]] - //DAE Kortrijk, Belgium//.
-  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] - //sudgylacmoe//.+  * [[https://www.youtube.com/watch?v=60z_hpEAtD8|A Swift Introduction to Geometric Algebra]] and [[https://www.youtube.com/playlist?list=PLVuwZXwFua-0Ks3rRS4tIkswgUmDLqqRy|From Zero to Geo]] - //sudgylacmoe//.
   * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.   * [[https://www.youtube.com/watch?v=cKfC2ZBJulg|Projective Geometric Algebra for Paraxial Geometric Optics]] - // Katelyn Spadavecchia//.
   * [[https://www.youtube.com/watch?v=11sH9X0OO9Y&list=PLnpuwbuviU2j7OSnZdstP5_g1ejA32bYA|Geometric Algebra Lectures ]] - //Miroslav Josipović//.   * [[https://www.youtube.com/watch?v=11sH9X0OO9Y&list=PLnpuwbuviU2j7OSnZdstP5_g1ejA32bYA|Geometric Algebra Lectures ]] - //Miroslav Josipović//.
Line 326: Line 330:
   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjyWv5wLVV7QfeS_d8pwCPv_|AGACSE2021]] - Selected talks.   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjyWv5wLVV7QfeS_d8pwCPv_|AGACSE2021]] - Selected talks.
   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjxrsTOr0KLDilkZaw7UE2Vc|Plane-based Geometric Algebra Tutorial]] - Presentation at SIBGRAPI 2021, //Steven De Keninck and Leo Dorst//.   * [[https://www.youtube.com/playlist?list=PLsSPBzvBkYjxrsTOr0KLDilkZaw7UE2Vc|Plane-based Geometric Algebra Tutorial]] - Presentation at SIBGRAPI 2021, //Steven De Keninck and Leo Dorst//.
 +  * [[https://www.youtube.com/watch?v=hTa_gErsrtM|Geometric Algebra]] - Talk at SIGGRAPH 2022, //Alyn Rockwood and Dietmar Hildenbrand//.
 +  * [[https://www.youtube.com/watch?v=nktgFWLy32U|Spinors for Beginners 11: What is a Clifford Algebra?]] - //eigenchris//.
 +  * [[https://www.youtube.com/watch?v=htYh-Tq7ZBI|Why can't you multiply vectors?]] - Talk at Dutch Game Day 2023, //Freya Holmér//.
 +  * [[https://www.youtube.com/watch?v=1AmeD0Vc8ow|GAME2023 Geometric Algebra Mini Event]] - Livestream.
 +  * [[https://www.youtube.com/watch?v=zgi-13F2Kec|Geometric Algebra: The Prequel]] - at GAME2023, //Steven De Keninck//.
 +
 ===== Computing frameworks ===== ===== Computing frameworks =====
   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.   * [[http://www.geometricalgebra.net/downloads.html|GAViewer & GA Sandbox]] - //Leo Dorst, Daniel Fontijne, Stephen Mann//.
Line 1374: Line 1384:
   * [[https://www.pacm.princeton.edu/sites/default/files/pacm_arjunmani_0.pdf|Representing Words in a Geometric Algebra]] (2021) - //Arjun Mani//   * [[https://www.pacm.princeton.edu/sites/default/files/pacm_arjunmani_0.pdf|Representing Words in a Geometric Algebra]] (2021) - //Arjun Mani//
 In this paper we introduce and motivate geometric algebra as a better representation for word embeddings. Next we describe how to implement the geometric product and interestingly show that neural networks can learn this product. We then introduce a model that represents words as objects in this algebra and benchmark it on large corpuses; our results show some promise on traditional word embedding tasks. Thus, we lay the groundwork for further investigation of geometric algebra in word embeddings. In this paper we introduce and motivate geometric algebra as a better representation for word embeddings. Next we describe how to implement the geometric product and interestingly show that neural networks can learn this product. We then introduce a model that represents words as objects in this algebra and benchmark it on large corpuses; our results show some promise on traditional word embedding tasks. Thus, we lay the groundwork for further investigation of geometric algebra in word embeddings.
 +
 +  * [[https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cmu2.12188|An approach to adaptive filtering with variable step size based on geometric algebra]] (2021) - //Haiquan Wang, Yinmei He et al//
 +Recently, adaptive filtering algorithms have attracted much more attention in the field of signal processing. By studying the shortcoming of the traditional real-valued fixed step size adaptive filtering algorithm, this paper proposed the novel approach to adaptive filtering with variable step size based on Sigmoid function and geometric algebra (GA).
  
   * [[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488174|A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995–2020]] (2021) - //Eduardo Bayro-Corrochano//   * [[https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488174|A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science 1995–2020]] (2021) - //Eduardo Bayro-Corrochano//
 Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics, computer science, and engineering. This review presents a comprehensive study of works on Quaternion Algebra and GA applications in computer science and engineering from 1995 to 2020. Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics, computer science, and engineering. This review presents a comprehensive study of works on Quaternion Algebra and GA applications in computer science and engineering from 1995 to 2020.
 +
 +  * [[https://dspace.library.uu.nl/bitstream/handle/1874/403340/thesis.pdf|Clifford algebras and their application in the Dirac equation]] (2021) - //Paul van Hoegaerden//
 +The aim of this thesis will be to study the Clifford algebras that appear in the derivation of the Dirac equation and investigate alternative formulations of the Dirac equation using (complex) quaternions. To this end, we will first look at the symmetries of the Dirac equation and some of the additional insights that follow from the Dirac equation. We will also give a derivation of the Dirac equation starting from the Schrödinger equation, in which we will come across the gamma matrices.
 +
 +  * [[https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cta.3132|Geometric Algebra for teaching AC Circuit Theory]] (2021) - //Francisco G. Montoya, Raúl Baños et al//
 +This paper presents and discusses the usage of Geometric Algebra (GA) for the analysis of electrical alternating current (AC) circuits. The potential benefits of this novel approach are highlighted in the study of linear and nonlinear circuits with sinusoidal and non-sinusoidal sources in the frequency domain, which are important issues in electrical engineering undergraduate courses.
 ===== Books ===== ===== Books =====
  
 ==== Historical ==== ==== Historical ====
 ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^ ^                                                                                                                                           ^ Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ^
-| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?650}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |+| [[https://archive.org/details/dieausdehnungsl04grasgoog|{{:ga:die_ausdehnungslehre_von_1844-grassmann.jpg?100}}]]                         | **Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik [Die Ausdehnungslehre von 1844] (1878)**\\ //Hermann Grassmann//\\ The Prussian schoolmaster Hermann Grassmann taught a range of subjects including mathematics, science and Latin and wrote several secondary-school textbooks. Although he was never appointed to a university post, he devoted much energy to mathematical research and developed revolutionary new insights. Die lineale Ausdehnungslehre, published in 1844, is an astonishing work which was not understood by the mathematicians of its time but which anticipated developments that took a century to come to fruition - vector spaces, dimension, exterior products and many other ideas. Admired rather than read by the next generation, it was only fully appreciated by mathematicians such as Peano and Whitehead.                                                                                                                                                |
 | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        | | [[https://archive.org/details/dieausdehnugsle00grasgoog|{{:ga:die_ausdehnungslehre-grassmann.jpg?100}}]]                                  | **Die Ausdehnungslehre (1864)**\\ //Hermann Grassmann//\\ In 1844, the Prussian schoolmaster Hermann Grassmann published Die Lineale Ausdehnungslehre. This revolutionary work anticipated the modern theory of vector spaces and exterior algebras. It was little understood at the time and the few sympathetic mathematicians, rather than trying harder to comprehend it, urged Grassmann to write an extended version of his theories. The present work is that version, first published in 1862. However, this also proved too far ahead of its time and Grassmann turned to historical linguistics, in which field his contributions are still remembered. His mathematical work eventually found champions such as Hankel, Peano, Whitehead and Élie Cartan, and it is now recognised for the brilliant achievement that it was in the history of mathematics.                                                                                                                                        |
 | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | | [[https://archive.org/details/bub_gb_bU9rkSdWlFAC|{{:ga:theorie_der_complexen_zahlensysteme-hankel.jpg?100}}]]                            | **Theorie Der Complexen Zahlensysteme (1867)**\\ //Hermann Hankel//\\ Insbesondere der Gemeinen Imaginären Zahlen und der Hamilton'schen Quaternionen Nebst Ihrer Geometrischen Darstellung.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
geometric_algebra.txt · Last modified: 2024/06/03 18:10 by pbk

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki